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Abstract

Object-Oriented Languages support a very flexible programming paradigm for implementing data
abstraction. However, there does not exist as yet an established approach to a formal semantics
for such languages. This is unsatisfactory, since a formal semantics is crucial for developing full
fledged formal methods for any programming language.

The present thesis provides contribution towards a robust development of a coalgebraic seman-
tics for Object-Oriented Languages. In particular, it addresses the critical issue of dealing with
binary methods. These are methods that take more than one parameter of a class type. Although
this problem has been dealt with before in the literature, we feel that it has not yet been solved in
a completely satisfactory way. The appeal of coalgebraic methods is their considerably low math-
ematical over head and their operational nature. The solution we propose, we think fits naturally
in this spirit.

More specially: we extend the H.Reichel and B.Jacobs coalgebraic account of specification and
refinement of objects and classes in Object Oriented Programming to (generalized) binary methods.
Generalized binary methods are methods whose type parameters are built over constants and class
variables, using products, sums and powerset type constructors. In order to take care of class
constructors, we model classes as bialgebras. We study and compare two solutions for modelling
generalized binary methods, which use, somewhat surprisingly, only, purely covariant functors.
In the first solution, which applies when we already have a class implementation, we reduce the
behaviour of a generalized binary method to that of a bunch of unary methods. These are obtained
by freezing the types of the extra class parameters to constant types. The bisimulation behavioural
equivalence induced on objects by this model amounts to the greatest congruence with respect
to method application. Alternatively, in the second solution, we treat binary methods as graphs
instead of functions, thus turning contravariant occurrences in the functor into covariant ones.

We investigate a coalgebraic semantics for the class-based object oriented imperative language,
Fickle, introduced and studied by Drossopoulou et al.. Fickle is a Java-like language, extending
Java with object re-classification. First we investigate notions of observational equivalences over
Fickle programs. Then, in order to study them, we define a coalgebraic model for Fickle programs.
However, in order to deal with the store, we need to extend the original approach of H.Reichel and
B.Jacobs, which is purely functional.

Finally, we address the problem of typing binary methods when subclasses are considered as
subtypes. We propose yet another solution, inspired by a view of functions as graphs, based on a
new typing system, where one can annotate in the type of an object whether a method is never
called on that object.





Acknowledgments

I am deeply indebted to my supervisors, Prof. Furio Honsell and Prof. Marina Lenisa for their
guidance, insight and encouragement throughout the course of my doctoral program and for their
kindness. Marina Lenisa, who has been an immensesource of inspiration and constant support at
each and every stage for a successful culmination of this dissertation. She has been exceptionally
generous.

I would like to express my gratitude to all the members of research group of Formal Methods and
Logics of Computation group for the numerous discussions and cooperation, and all the members
of DIMI University of Udine for being so helpful in my Research.

I would like to thank Prof. Furio Honsell, Vice-Chancellor of the University of Udine and
Dr.B.G Sidharth, Directer General of B.M Birla Science Center, Hyderabad, for the joint-research
collaboration project under EU-India Economic Cross Cultural Programme (ECCP), ICT for EU-
India Cross Cultural Dissemination - ALA/95/23/2003/077-54, by which I got opportunity to
pursue research, and International Institute for Applicable Mathematics and Information Sciences
(IIAMIS), a joint institute between B.M Birla Science Center, Hyderabad-India and University of
Udine-Italy for motivation and support.

Special thanks go to external referees, Prof. Jan Rutten, CWI Amsterdam, The Netherlands
and Dr. Luigi Liquori, Maitre de Recherche, INRIA Sophia Antipolis, France, for their careful
reading, valuable comments and suggestions about the writing of this manuscript.

I would not have embarked on pursuing this scientific enquiry without the constant support
and encouragement of my daughters, Sathwika and Divyagna, I am indebted to my husband,
Sri Sathyanarayan Reddy Bavikadi, who has been an immensesource of inspiration and constant
support for a successful culmination of this dissertation. I would especially like to thank to my
Parents and in-laws for their encouragement.

This work is partially supported by the UE project DART: Dynamic Assembly, Reconfigura-
tion and Type-checking - IST-2001-33477, TYPES - IST-CA-510996, the MIUR Project CoMeta:
Computational Metamodels and ART: Analysis of systems of Reduction by means of Systems of
Transition - PRIN 200501824.





Contents

Introduction vii

I First Part: Object-Oriented Programming 1

1 General Principles of Object-Oriented Programming 3
1.1 Object-Oriented Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Abstract Data Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Data Abstraction and Object Oriented Programming . . . . . . . . . . . . . . . . . 7

1.3.1 Data Abstraction as Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3.2 ADT vs OO-Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Inheritance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.5 Types for Object-Oriented Languages . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 An Object-Oriented Language 17
2.1 Syntax of Fickle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Fickle’s Operational Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3 Fickle’s Observational Equivalences . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4 Typing Rules for Fickle programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

II Second Part : The Theory of Co(bi)algebras 29

3 Bialgebraic Preliminaries 31
3.1 Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1.1 Initial Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2 Coalgebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2.1 Final Coalgebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3 Bialgebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3.1 Final Bialgebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.4 Congruences and Bisimulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.5 Bialgebraic Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.5.1 Algebraic Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.5.2 Coalgebraic Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.5.3 Bialgebraic Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4 Bialgebraic Specifications 43
4.1 (Co)algebraic Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2 Class Specifications and Class Implementations . . . . . . . . . . . . . . . . . . . . 46
4.3 Examples of Class Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

III Third Part: Binary Methods 51

5 Bialgebraic Semantics for Binary Methods 53
5.1 Generalized Binary Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.2 Bialgebraic Description of Objects and Classes: unary case . . . . . . . . . . . . . 56

5.2.1 Coalgebraic Behavioural Equivalence . . . . . . . . . . . . . . . . . . . . . . 57



ii Contents

5.3 Coalgebraic Description of Generalized Binary Methods . . . . . . . . . . . . . . . 58
5.3.1 The Freezing Functor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.3.2 The Graph Functor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.3.3 Comparing Graph and Freezing Bisimilarity Equivalences . . . . . . . . . . 65

5.4 Remarks and Directions for Future Work . . . . . . . . . . . . . . . . . . . . . . . 66

6 Towards Co(bi)algebraic Descriptions of Object-Oriented Languages with Store 69
6.1 Coalgebraic Description of Fickle Objects and Programs . . . . . . . . . . . . . . . 69

6.1.1 Binary Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.2 Coalgebraic and Observational Equivalences on Programs . . . . . . . . . . . . . . 72
6.3 Remarks and Directions for Future Work . . . . . . . . . . . . . . . . . . . . . . . 73

7 Typing Binary Methods 75
7.1 The Problem of Typing Binary Methods . . . . . . . . . . . . . . . . . . . . . . . . 75
7.2 Existing Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
7.3 Yet Another Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Conclusions 83

Appendix 85

Bibliography 89



List of Figures

1.1 An example of class for the ADT Integer . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 An observer/constructor specification for lists. . . . . . . . . . . . . . . . . . . . . . 8
1.3 Implementation of an ADT for lists. . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4 Implementation of lists as PDAs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.5 An example of Inheritance with overriding functions . . . . . . . . . . . . . . . . . 11
1.6 Inheritance with overriding functions . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.7 The class Point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.8 The class ColorPoint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.9 An example of Binary method with overloaded functions . . . . . . . . . . . . . . . 14

4.1 Example of Specification for List . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2 Implementation of class Stack in Fickle . . . . . . . . . . . . . . . . . . . . . . . . 50
4.3 Implementation of class Register in OCaml . . . . . . . . . . . . . . . . . . . . . . 50

7.1 The class Point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
7.2 The class ColorPoint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
7.3 The Method breakit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
7.4 The PointPair and ColorPointPair classes . . . . . . . . . . . . . . . . . . . . . . 77
7.5 Fickle code for breakit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
7.6 New version for breakit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82



iv List of Figures



List of Tables

2.1 Syntax of Fickle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2 Operational Semantics: execution without exceptions and errors . . . . . . . . . . 21
2.3 Operational semantics: generation of exceptions and errors . . . . . . . . . . . . . 22
2.4 Operational semantics: propagation of exceptions and errors . . . . . . . . . . . . . 23
2.5 Subclasses, well-formed inheritance hierarchy, subtypes . . . . . . . . . . . . . . . . 24
2.6 Typing rules for Fickle expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.7 Typing rules for Fickle classes and programs . . . . . . . . . . . . . . . . . . . . . 26

4.1 Examples of Class Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.2 Examples of Classes Implementing the Class Specifications. . . . . . . . . . . . . . 49

C.1 Typing rules for Relational Types ⊗ . . . . . . . . . . . . . . . . . . . . . . . . . . 83



vi List of Tables



Introduction

Coalgebraic semantics originated with Aczel-Mendler, Rutten-Turi, for CCS-like languages, [3, 4,
70, 71, 72], and it was further generalized to λ-calculus, [41], higher-order imperative languages,
[51], Object-Oriented languages in a functional setting, [64, 47, 49], π-calculus, [43, 16] by various
other researchers: Honsell, Jacobs, Lenisa, Reichel.

The gist of the coalgebraic semantics paradigm (final semantics) is to view the interpretation
function from syntax to semantics as a final mapping in a suitable category. To this end, the
semantics has to be construed as a final coalgebra for a suitable functor F and the syntax has to
be cast in form of an F -coalgebra. This approach is driven by the operational semantics of the
language, because it is the semantics which determines the structure of the functor F . This is
dual to the syntax-driven approach of algebraic semantics (initial, denotational semantics), where
syntax is construed as an initial F -algebra and the semantics is defined as an F -algebra. The main
advantage of the coalgebraic semantics is that it induces a behavioural equivalence on programs,
which can be characterized as a coalgebraic bisimilarity, i.e. as greatest coalgebraic bisimulation.

In [64, 47, 49], Reichel and Jacobs have introduced a coalgebraic model of objects and classes
of Object-Oriented languages (OO-languages). The idea underpinning this approach is that coal-
gebras, duals to algebras, allow to focus on the behaviour of objects while abstracting from the
concrete representation of the state of the objects. Algebras have “constructors” (operations pack-
aging information into the underlying carrier set); coalgebras have “destructors” or “observers”
(operations extracting information out of the carrier set), which allow to detect certain behaviours.

Classes in OO-languages are given in terms of attributes (fields) and methods. The values of
attributes determine the states of the class, i.e. the objects; methods act on objects.

In the coalgebraic approach of [64, 47, 49], a class is modelled as an F -coalgebra (A, f : A →
F (A)) for a suitable functor F . The carrier A represents the space of attributes, or fields, and
the coalgebra operation f represents the public methods of the class, i.e. the methods which are
accessible from outside the class. Thus the objects of a class are modelled as the elements of
the carrier. Their behaviour under application of public methods, viewed as functions acting on
objects, is then captured by the coalgebra map f . Thus the coalgebraic model induces exactly this
behavioural equivalence on objects, whereby two objects are equated if, for each public method,
the application of the method to the two objects, for any list of parameters, produces equivalent
results. A benefit of the coalgebraic model is a coinduction principle for establishing the behavioural
equivalence.

The original Reichel-Jacobs approach has been mainly used to study the correspondence be-
tween class specifications (i.e. abstract classes together with assertions on method’s behaviour)
and class implementations in the field of program and data refinement, [49, 39].

But in Reichel-Jacobs approach, only a single class in isolation is modelled and the setting is
purely functional. Moreover, binary methods, i.e. methods which take another instance of the
hosting class as argument1, cannot be described in such original coalgebraic approach, since they
would produce a contravariant occurrence of the variable in the corresponding functor.

The present thesis provides contribution towards a robust development of a coalgebraic seman-
tics for OO-languages. In particular, it addresses the critical issue of dealing with binary methods.
Although this problem has been dealt with before in the literature, we feel that it has not yet been
solved in a completely satisfactory way. The appeal of coalgebraic methods is their considerably
low mathematical over head and their operational nature. The solution we propose, we think
fits naturally in this spirit. More specially: in this thesis, we extend Reichel-Jacobs coalgebraic
description to generalized binary methods, i.e. methods whose type parameters are built over con-
stants and class variables, using products, sums and powerset type constructor. This is a quite

1By a standard abuse of terminology, binary methods refer to methods with n ≥ 2 class parameters.
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large collection of methods, including all the methods which are commonly used in Object-Oriented
Programming, and potentially more.

Our focus of interest are equivalences on objects which are “well-behaved”, i.e. are congruences
w.r.t. method application. We propose two different solutions. Our first solution is based on the
observation that the behaviour of a generalized binary method can be captured by a bunch of
unary methods obtained by “freezing”, in turn, the types of the class parameters to the states of
the class implementation given at the outset, i.e. by viewing them as constant types. Our second
solution is based on a set-theoretic understanding of functions, whereby binary methods in a class
specification are viewed as graphs instead of functions. Thus contravariant function spaces in the
functor are rendered as covariant sets of relations.

We prove that the behavioural equivalence induced by the “freezing approach” amounts to
the greatest congruence w.r.t. method application on the given class, at least for finitary binary
methods, i.e. methods where the type constructors range over finite product, sum and powerset.
As a by-product, we provide a (coalgebraic) coinduction principle for reasoning about such greatest
congruence.

As far as the graph model is concerned, the behavioural equivalence is not a congruence, even
for finitary binary methods. However, we show that a natural necessary and sufficient condition
for this to hold is that the graph and freezing equivalence coincide. As a consequence, when this
is the case, we obtain a spectrum of logically independent coinduction principles for reasoning on
the greatest congruence.

In this thesis, we also investigate the possibility of extending the original coalgebraic approach
to imperative OO-languages. To this aim, we focus on a fragment of the imperative typed class-
based language Fickle, [29, 30], which extends Java with re-classification. Re-classification allows
objects to change class membership dynamically (e.g. see [22, 74, 33, 75]), while retaining their
identity.

In dealing with Fickle, the approach of [64, 47] needs to be refined to accommodate imperative
features as well as general programs, i.e. sequences of classes possibly related by inheritance, mutual
definitions, etc. Special care needs to be devoted to representing the store, and in defining the
evolution of objects, we have to take into account all possible pointers involving them.

In this thesis, we deal directly only with unary methods, and we discuss the extra problematic
issues which arise in the imperative setting, when we try to model also binary methods. Moreover,
in this thesis, we investigate the possibility of using the coalgebraic model also for program equiv-
alence and program transformation. This is some what dual goal w.r.t. the program refinement of
Reichel and Jacobs.

Finally, we discuss the problem of typing binary methods, when subclasses are considered as
subtypes. In concrete OO-languages, the problem is either solved by only altering overriding and
forbidding overloading (such as in C++) or by implementing method calls with multiple dispatching
(such as in Java), i.e. by choosing the method code to activate according to the types of all class
parameters, and not only the object type. In this thesis, we propose an alternative solution based
on single dispatching and on a new typing system, where one can annotate in the type of an object
whether a method is never called on that object, this solution is suggested by the graph coalgebraic
semantics.

Summing up, the main contributions of this thesis are:

1. a coalgebraic semantics of generalized binary methods, main results are published in [45];

2. a coalgebraic semantics of imperative OO-Languages, main results are published in [44];

3. a typing system for typing binary methods, in presence of a subtyping relation.

While we feel that the objective in (1) is substantially achieved, apart from the case of infinitary
methods, (2) and (3) require further developments before the problems can be considered and solved
in full generality.
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Structure of the Dissertation

Here we outline the structure of the dissertation and the origin of each chapter. Apart from the
present introduction, this thesis is divided into three main parts.

In Part I, we present Object Oriented Programming concepts and Examples of Object Oriented
languages. This part consists of two chapters. General principles of OO-Programming, abstract
data types and types for Object Oriented language are discussed in Chapter 1. An example of
a class-based, Object Oriented imperative language, namely Fickle, is presented in Chapter 2
together with its syntax, operational semantics and typing rules. Moreover, in this chapter, we
introduce and discuss various notions of observational equivalences.

In Part II, we present the theory of co(bi)algebras. This part consists of two chapters. In
Chapter 3, we describe bialgebraic preliminaries, i.e. we introduce the basic notions of algebras,
coalgebras, bialgebras, congruence, bisimulation, and final semantics. In Chapter 4, we present
basic concepts of (co)algebraic specifications. We will introduce the notions of class specification
and class implementation, together with various examples of bialgebraic specification.

In Part III, we present the issues related to binary methods. This part contains the main
contribution of the thesis and it consists of three chapters. In Chapter 5, we present our bialgebraic
model of classes and objects of OO-languages. this extends the original Reichel-Jacobs coalgebraic
model to generalized binary methods. In Chapter 6, we present our co(bi)algebraic account of
Fickle programs, together with natural observational equivalences and we discuss the extra issues
arising in presence of binary methods. In Chapter 7, we discuss the problem of typing binary
methods when subclasses are considered as subtypes. We discuss some known solutions, and we
present a new solution inspired by a view of functions as special graph relations.

In the conclusions, we discuss remarks, open questions and possible directions for future work.
In Appendix 7.3, we present categorical preliminaries and theorems.
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1
General Principles of

Object-Oriented Programming

In this chapter we provide an introduction and discuss the main issues concerning the Object-
Oriented paradigm. In particular we discuss Object-Oriented Programming, abstract data types,
and types for Object-Oriented languages. We follow rather closely W. Cook [24], B. Meyer [60],
M. Abadi et al. [1].

1.1 Object-Oriented Programming

In Object-Oriented Programming (OO-Programming for short), one fundamental notion is that of
object. Abstractly, an object is a datum together with operations that can query and modify its
state (i.e. actual data + processing). We can think of an object as state together with a collection
of operations, often referred to as methods (or procedures, that share access to private local state
- actual processing). In implementations, sets of operations are often associated with classes of
objects and it is merely an illusion that each object has its own embedded operations.

Most Object-Oriented languages (OO-languages) can be class-based or object-based. OO-
languages, such as Smalltalk, C++, Java, Fickle and OCaml, use classes to create objects, are
called class-based languages. In such languages, the implementation of an object is specified by its
class and the objects are created by instantiating their classes. There are also some OO-languages
with objects but no classes, are called object-based languages like the experimental language Self
[79], or the ECMAscript language. In object-based languages, such as Self, the effect of classes can
be achieved by creating a canonical object for each class and using cloning to create new instances.

The general principles of object oriented programming are: objects; data abstraction; classes;
inheritance; polymorphism and dynamic binding; and multiple inheritance. Here is a brief summary
of object-oriented features [60].

• Data abstraction describes the ability to hide implementation details of one part of a program
from another and focuses on the meaning of the operations (behaviour). In the context of
objects, this often means that a program can only access an object’s state indirectly via
its methods. Thus we effectively reduce the size of an object’s interface. Small interfaces
result in more easily maintainable code. The notion of data abstraction is not exclusive to
OO programming. It is key to the concept of abstract data types. For examples of data
abstraction in a non-object setting, see [62].

• Classes can be considered as templates for creating objects. Classes define the shape of the
internal state and the methods for objects, its instances, created from it. Other than giving
compilers hints as to how to group code for methods, it is also a convenient way for inducing
a type system for objects.

• Inheritance is a feature that aids reuse of software components. It is typically available in
languages with classes, and allows programmers to define new classes by extending existing
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classes - these can share their behaviour without having to reimplement that behaviour. The
new class is called an immediate subclass of the existing class which is referred to as the
immediate superclass. More generally, we use the term subclass to refer to the transitive
closure of immediate subclass, and similarly for superclass. Inheritance saves effort from the
programmer’s point of view because the subclass’s methods are copied, or inherited, from
the superclass.

Subtyping allows instances of subclasses to be used in places where an instance of its superclass
is expected. For languages whose types are induced by classes, the subtype relation is usually
identified with inheritance. In such languages, subtyping with dynamic binding gives a form
of polymorphism that makes inheritance a particularly useful feature.

• Polymorphism allows the same code to be applied to objects of different classes, so long as
they support a common interface. With subtyping, this allows existing code to be easily
reused.

• Dynamic binding is the use of the pseudo-variable self, which refers to the current object,
in method-code to refer to sibling methods. In the presence of inheritance, dynamic binding
significantly increases the expressiveness of the language. In the absence of inheritance, the
sibling methods are always the same. With inheritance, this is no longer the case since a
subclass can inherit some methods, and override or overload (see Section 1.4) others. Dynamic
binding allows method-code to always invoke the correct sibling methods.

• Multiple inheritance is the ability to derive subclasses from more than one superclass. Its
position as an essential feature of an OO-language is in constant debate.

When information systems are modeled as objects, they can employ the powerful inheritance
capability. For instance, instead of building separate tables for employees with department and
job information, the type of employee is modeled. The employee class contains the data and
the processing for all employees. Each subclass (manager, secretary, etc.) contains the data and
processing unique to that person’s job. Changes can be made globally or individually by modifying
the appropriate class.

Inheritance can be implemented using delegation, where a subclass can be approximated by a
new object that owns an instance of the superclass, or embedding, where attributes and/or methods
of one object are copied into another.

Object-based languages are possibly more expressive than class-based languages. For example, in
an object-based language, one can create objects whose shape is determined at runtime. Conversely,
in a traditional class-based language, objects are instances of classes which cannot be created at
runtime i.e. dynamically. Class-based languages are more established in industry than their object-
based counterparts. Object-based languages (like Self ) are used particularly in the area of artificial
intelligence.

1.2 Abstract Data Types

The earlier concepts of “data type” and “data structure” have gradually merged into the single
concept of data abstraction. This merger has occurred as an outgrowth of research in a number
of areas related to the structure and meaning of programs, including the design of programming
languages, the theory of programming language semantics, the verification of programs, and the
theory of data types and structures.

Abstract data types(ADT’s) are the traditional way of treating data abstraction. The basic
concept of abstraction is that a data type should be defined only in terms of operations that are
valid on objects of its type, not in terms of how the type is implemented on a real computer. Objects
of a given type are created and inspected only by function calls. This allows the implementation
of a data type to be changed without requiring any changes outside the module of code in which
that type is defined.
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Abstract data types are often referred as user-defined data types, this is the way by which
programmers can define their own data types. Just like a primitive type Integer with operations
+, -, * , etc., an abstract data type has a type domain, whose representation is unknown to users,
and a set of operations defined on the domain. Abstract Data Types were first formulated in their
pure form in CLU [58, 55]. The theory of abstract data types is given by [61, 21]. Abstract Data
Types are defined as

“entities that encapsulate information and provide operations to manipulate objects”

The users can only create values of an ADT by using the constructors, i.e. users of an ADT
must use the well defined interface to act on the type.

First we give a somewhat lengthy presentation of the primitive data type Integer, which can
be represented in a computer. Most of the programming languages, such as C, C++, Java and
others, already offer an implementation for it. Sometimes it is called int or integer. Once created
a variable of this type, we can use its provided operations. For instance, we can assign a value to
a variable, we can add two integer numbers. We can define Integer ADT as:

Constructor : Creates an instance of an Integer ADT of type integer.

Operations: setValue, addValue etc.

Example 1.2.1 We discuss a very detailed implementation for the addition of two integer num-
bers:

int i,j,k; /* Define three integers */
i = 1; /* Assign 1 to integer i */
j = 2; /* Assign 2 to integer j */
k = i + j; /* Assign the sum of i and j to k */
In the above code, first line defines three instances i, j and k of type Integer. Consequently,

for each instance the special operation constructor should be called, this is internally done by
the compiler. The compiler reserves memory to hold the value of an integer and “binds” the
corresponding name to it. If we refer to i, this actually refers to the memory area which was
“constructed” by the definition of i. Optionally, compilers might choose to initialize the memory,
for example, they might set it to 0 (zero).

The next line
i = 1;
sets the value of i to be 1. Therefore, it can be described with help of the ADT notation as:
Perform operation set with argument 1 on the Integer instance i. This is written as follows:
i.setValue(1).
It has a representation at two levels. The first level is the ADT level where one expresses

everything that is done to an instance of this ADT by the invocation of the defined operations. At
this level, for complete specification, preconditions and postconditions are used to describe what
actually happens. At this level, the conditions are mathematical conditions. In the example, these
conditions are enclosed in curly brackets.
{ Precondition: i = n where n is any Integer }
i.setValue(1)
{ Postcondition: i = 1 }
The second level is the implementation level, where an actual representation is chosen for the

operation. In C the equal sign “=” implements the setValue() operation.
Let’s stress these levels a little bit further and have a look at the line
k = i + j;
Obviously, “+” was chosen to implement the addValue operation and at the ADT level this

results in
{ Precondition: Let i = n1 and j = n2 with n1, n2 particular Integers }
i.addValue(j)
{ Postcondition: i = n1 and j = n2 }
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The postcondition ensures that i and j do not change their values. Specification of addValue
says that a new Integer is created the value of which is the sum. The setValue operation is applied
to access this new instance k:
{ Precondition: Let k = n where n is any Integer }
k.setValue(i.addValue(j))
{ Postcondition: k = i + j }.
However, the user cannot inspect the representation of integer values.

Example 1.2.2 Complex numbers cannot be represented natively in a computer. A Complex
Number ADT can be defined as:

Constructor : Creates an instance of a Complex Number ADT using two floats (real,
imaginary parts), a and b, where a represents the real part and b represents the
imaginary part.

Operations: addition, subtraction, multiplication, division, comparison, etc.

For a complete specification, each such above operation of ADT should be defined with con-
straints i.e. inputs, outputs, preconditions, postconditions, and assumptions. ADTs are closely
related to algebraic specifications [35, 37]. We discuss algebraic specifications further in Chapter
4. ADTs specify the meaning of operations (behaviour) independently of the concrete implementa-
tion. ADTs have the advantage of providing flexibility to modify an object implementation without
affecting other routines, as long as the external interface remains the same.

Example 1.2.3 Consider the ADT List, for which functions are provided to create an empty list,
to return the first element of the list, and to return the remaining elements of the list. The ADT
List can be defined as:

Constructors: -for constructing an empty list, nil ;
-for creating an instance of the ADT List, adding
an element a to the front of a list.

Operations: head, tail, isEmpty.

Example 1.2.4 As another example, consider the ADT Stack, for which functions are provided
to create an empty stack, to push values onto a stack, and to pop values from a stack. The ADT
Stack can be defined as:

Constructors: -for constructing an empty stack, nil ;
-for creating an instance of a stack using
an element a to be added on top of a stack.

Operations: push, pop, top, isEmpty.

The number of ways a given ADT can be implemented depends on the programming language.
For example, the stack example could be written in C using a struct and an accompanying set of
data structures using arrays or linked lists to store the entries; however, the actual implementation
is hidden from the user.
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classInteger {
attributes:

int i
methods:

setValue(int n)
Integer addValue(Integer j)

}

Figure 1.1: An example of class for the ADT Integer

1.3 Data Abstraction and Object Oriented Programming

Object-Oriented programming offers an alternative way to implement data abstraction besides
ADTs. In OO-programming, data abstraction may refer to objects of a class, or to a special ADT
created in traditional, non-OO-Programming languages. Therefore a class defines the properties
of objects which are the instances in an object-oriented environment.

Data abstractions define functionality by putting main emphasis on the involved data, their
structure, operations as well as axioms and preconditions. Consequently, data abstractions have a
crucial role in OO-Programming. One can say that OO-Programming is programming with data
abstraction i.e. combining functionality of different ADTs to solve the problem.

1.3.1 Data Abstraction as Classes

In object oriented programming classes are built around a hidden state space, which can only be
observed and modified using certain specified operations. A user is not interested in the details of
the actual implementation, but only in the behaviour that is realized.

A class is an actual representation of a data abstraction. It therefore provides implementation
details for the data structure used and operations. We give an example of class for the ADT
Integer, see Figure 1.1.

In Figure 1.1, class denotes the definition of a class, which consists of two sections, attributes
and methods, which define the implementation of the data structure and the operations of the
corresponding data abstraction. Again we distinguish the two levels with different terms. At the
implementation level, we speak of attributes which are elements of the data structure. The same
applies to methods which are the implementation of the operations.

In our example, the data structure consists of only one element: a signed sequence of digits.
The corresponding attribute is an ordinary integer of a programming language. We only define
two methods setValue() and addValue(), representing the two operations set and add.

A class introduces a collection of operations which are imperative, in the sense that methods
modify objects which have an internal, updatable state.

In contrast, an ADT introduces a new type. Any operation on a value of the new type must
take the value as an input parameter. With a pure ADT, there are no operations that modify
values of the type. Instead, some operations can generate fresh, new values of the type.

1.3.2 ADT vs OO-Programming

Object-oriented programming involves the construction of objects which have a collection of meth-
ods, or procedures, that share access to private local state.

Objects resemble machines or other things in the real world more than any well-
known mathematical concept.

-William R. Cook [24]
Abstract Data Types and Objects are two primary forms of data abstraction, but objects

are not ADTs. The basic difference is in the mechanism used to achieve the abstraction barrier
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Constructor of s

observations nil adjoin(s′,n)

isEmpty? (s) true false

head(s) error n

tail(s) error s′

Figure 1.2: An observer/constructor specification for lists.

between a user and the data. Objects use procedural abstraction (methods), while ADTs use type
abstraction -one that can be used by a user to declare variables but whose representation cannot
be inspected directly. In Object-Oriented programming, the data is abstract because it is accessed
through a procedural interface -although all of the types involved may be known to the user. This
characterization is not completely strict, in that the type of a procedural data value can be viewed
as being partially abstract, because not all of the interface may be known; in addition, abstract
data types rely upon procedural abstraction for the definition of their operations.

Following William R. Cook [24] we distinguish ADTs and OO-Programming. As an example,
consider a data abstraction for integer lists. The constructors are nil, which constructs an empty
list, and adjoin, which takes a list and an integer, and forms a new list with the integer added
to the front of the list argument. The observers are isEmpty?, head, and tail. isEmpty? is a
predicate that returns true if its argument is the empty list; i.e. if it is equal to nil. Head returns
the first integer in a non-empty list. Tail returns the rest of a non-empty list. The behavior of the
observers on each constructor is given in Figure 1.2. The value of the isEmpty? observation on the
nil constructor is true, and on the adjoin constructor it is false. The head and tail observations on
nil both result an error condition. In Figure 1.2, isEmpty?, head, and tail observations are unary,
since they observe a single value of the abstract data.

Abstract Data Types can be viewed as a decomposition of the specification matrix into ob-
servations, horizontal rows in Figure 1.2, where each row collects the information about a single
observer together in a unit. Information about a given constructor is spread across components.

Each observation is formed into an independent operation that returns the appropriate result
when applied to any of the constructors values. The constructors are also included as operations.
The connection between the constructors and the observations is via a shared representation. In
order to keep the representation abstract, its structure is hidden from users of the ADT. The users
can only create values of the type by using the constructors, and inspect them only with observer
operations. The concrete representation is usually derived from the form of the constructors, but
alternative representations are also possible. Since they all share access to the real representation
of the abstract type, the operations are tightly coupled.

An implementation of the ADT for integer lists is shown in Figure 1.3. The syntax is based
loosely on ML. The ADT has two distinct parts: a representation and a set of operations.

(i) The representation is defined as a labeled union type, or variant record, with cases
named NIL and CELL. The NIL variant is simply a constant, while the CELL
variant contains a pair of an integer and a list. The constructors nil and adjoin are
defined as operations that build appropriate representation values.

(ii) The observations are defined by a case statement over the representational variants
which returns the appropriate value from the specification. isEmpty? is a query
operation that determines if a list is nil. head and tail are accessors which return
the first integer in the list, and the abstract list representing the tail, respectively.



1.3. Data Abstraction and Object Oriented Programming 9

adt IntList
representation

list = NIL — CELL of integer * list
operations

nil = NIL
adjoin(x : integer, l : list) =

CELL(x, l)
isempty?(l : list) = case l of

NIL⇒ true
CELL(x, l)⇒ false

head(l : list) = case l of
NIL⇒ error
CELL(x, l ) ⇒ x

tail(l : list) = case l of
NIL ⇒ error
CELL(x, l ) ⇒ l

Figure 1.3: Implementation of an ADT for lists.

An user of the ADT is able to declare variables of type list and use the operations to create
and manipulate list values.
var l : list = adjoin(adjoin(nil, 4), 7);

However, the user cannot inspect the representation of list values.
Procedural Data Abstraction (PDA) can be viewed as a decomposition of a data abstraction

specification into constructors, columns in the Figure 1.2, each of which collects all the information
about a given constructor into a unit. The values of the different observations are spread across
the constructors.

Each constructor is converted into a class, for constructing procedural data values, or objects.
The arguments to the constructor become the local state, or instance variables of the procedural
data value. In the list example the nil object has no local state, while the cons object has two
pieces of state: one to hold the integer value and the other to hold the rest of the list.

The observations become components or fields of the objects made by a constructor. The
observations are often called attributes or methods. Each object is represented as the combination
of the observations applicable to it. Since the result of an observation on a constructor is what
a user is interested in, only the mechanism for producing the observed value needs to be hidden
from the user.

In organizing the matrix in this way, a case discrimination is done on the operation to be
performed, not on the constructor representations as in an ADT. Since operations are visible to
the user, there is no need for a hidden case statement: the user can simply select the appropriate
observation directly.

The two constructors for list objects are defined in Figure 1.4. The constructor functions, Nil
and Cell, return record values. The constructor for cells takes two arguments, x and l, which play
the role of instance variables of the object. In this example they are not changed by assignment,
though there is no essential reason why they could not be modified (if, for example, a set-head
method were introduced).

Each constructor creates a record with fields named isEmpty?, head, tail, and cons. The imple-
mentation uses recursive records, where the identifier self refers to the record being constructed.
An observation m on an object o, which is written m(o) in the specification, is implemented by
selecting the m field of the object: o.m. Explicit functional abstraction is introduced to represent
the methods: the notation fun(x) represents a function of one argument named x. Unlike the ADT
implementation, there are no explicit case statements in the PDAs. An implicit case statement is
used to select the appropriate observation from the objects.
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Nil = recursive self = record
null? = true
head = error;
tail = error;
cons = fun(y) Cell(y, self);
end

Cell(x, l) = recursive self = record
isEmpty? = false
head = x;
tail = l;
cons = fun(y) Cell(y, self);

Figure 1.4: Implementation of lists as PDAs.

There are several levels of recursion in the implementation [?]. The Nil and Cell objects pass
themselves as an argument to the Cell constructor, in response to a adjoin message. In addition,
the Cell constructor function is itself recursive, because it is called from within the cell adjoin
method. It is also possible for objects to return themselves as values of a method, as is common
in Smalltalk. A user of the PDA creates objects and sends requests, or messages, to them.
var l = Nil.adjoin(4).adjoin(7);

As in the case of ADTs, the user cannot inspect the internal representation of list values,
although the external format of all the messages are known.

Comparing ADT’s and PDA’s

We will briefly compare the pro’s and con’s of ADT’s and PDA’s.

• Adding new constructors in
ADT: it is a little cumbersome, in that all operations (i.e. destructors) need to be modified;
PDA: it is common practice and can be done without modifying any of the existing code.

• Adding new observations in
ADT: it needs to access the hidden representation of the data types. Existing languages do
not support it;
PDA: it is common practice, it is the whole purpose of inheritance.

It is easier to optimize operations in ADT’s than in PDA’s. The same applies to formal
verification. Part of the research in this thesis is a contribution to simplify the formal approach to
PDA’s.

In the light of the present thesis it will become clear that ADT’s support amd implement an
algebraic view of data abstraction while PDA support a coalgebraic view of data abstraction.

1.4 Inheritance

Inheritance is the mechanism which allows a class A to inherit properties of a class B. We say A
inherits from B. Objects of class A thus have access to attributes and methods of class B without
the need to redefine them.

The following definition defines two terms which refer classes related by inheritance.

Definition 1.4.1 (Superclass/Subclass) If class A inherits from class B, then B is called su-
perclass of A. A is called subclass of B. Objects of a subclass can be used where objects of the
corresponding superclass are expected. This is due to the fact that objects of the subclass inherit
the (same) behaviour of the objects of the superclass.
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class Point
attributes
xValue : int
yValue : int

methods
pt.get-x = pt.xValue
pt.get-y = pt.yValue
pt1.eq(pt2 : Point) =

if (pt1.get-x = pt2.get-x & pt1.get-y = pt2.get-y)
then true
else false

end class

class ColorPoint extends Point
attributes
sValue : int

methods
cpt.get-s = cpt.sValue
cpt1.eq(cpt2 : Point) =

if (cpt1.get-x = cpt2.get-x & cpt1.get-y = cpt2.get-y)
then true
else false

end class

Figure 1.5: An example of Inheritance with overriding functions

In object-oriented programming languages we also find other terms for superclass and subclass.
Superclasses are also called parent classes. Subclasses may also be called child classes or just
derived classes. For instance, see Figure 1.5, subclass ColorPoint inherits xValue and yValue
variables and get-x, get-y methods from its superclass Point.

We can again inherit from a subclass, making this class the superclass of the new subclass.
This leads to a hierarchy of superclass/subclass relationships. A subclass can use the methods of
its superclass(es) or it can override them.

• Overriding Methods. In a class hierarchy, when a method in a subclass has the same name
and type signature as a method in its superclass, which implements a different version, or
extends the existing version, of a superclass method, then the method in the subclass is
said to override the method in the superclass. E.g. see Figure 1.5, method eq of class
Point is overridden in class ColorPoint with same method name eq and same signature
Point. Figure 1.6 shows another example, where method total of class Seme1 is overridden
in class Seme2 with same name and signature, but, with different method bodies. When an
overridden method is called from within a subclass, it will always refer to the version of that
method defined by the subclass. The version in the superclass will be hidden.

• Overloading Methods. A method in a class is said to be overloaded if it has the same name
and different type signatures as a method in its class (e.g. constructors of the class) or in its
superclass. E.g. see Figure ??, method eq of class Point is overloaded in class ColorPoint
with same method name eq and different signature ColorPoint.

1.5 Types for Object-Oriented Languages

An interface type, also called an object type or simply a type contains the names of the object’s
methods, and the types of each method’s arguments and results.
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class Seme1
attributes
m1Value : int
m2Value : int

methods
stu.get-m1 = stu.m1Value
stu.get-m2 = stu.m2Value
stu.total = stu.m1Value+stu.m2Value

end class

class Seme2 extends Seme1
atributes
m3Value : int

methods
stu.get-m3 = stu.m3Value
stu.total = stu.m1Value+stu.m2Value+stu.m3value

end class

Figure 1.6: Inheritance with overriding functions

Binary operations which take two arguments of the same type are quite familiar in non-object-
oriented languages. Typical examples include arithmetic operations on number objects, as well as
binary relations such as = and >, and set operations like subset and union. In object-oriented
languages these operations are generally written as methods. In this case the first argument of the
binary operation becomes the receiver of a corresponding “message”, with the second parameter
becoming the only argument. Consequently, we define a binary method of some object of type τ
as a method that has an argument of the same type τ . Such a method is binary in the sense that
it acts on two objects of the same type: the object passed as argument and the receiving object
itself. In general, a binary method could also include other arguments (including other arguments
of the same type); by a standard abuse of terminology we still refer to these as binary methods.

A subtype is a datatype that is generally related to another datatype (the supertype) by some
notion of substitutability, meaning that computer programs written to operate on elements of the
supertype can also operate on elements of the subtype. More specifically, the supertype-subtype
relation is often taken to be the one defined by the Liskov substitution principle [56]; however, any
given programming language may define its own notion of subtyping, or none at all.

Liskov substitution principle [57] formulated as

“Let q(x) be a property provable about objects x of type T. Then q(y) should be true for
objects y of type S where S is a subtype of T.”

Liskov and Wing’s notion of subtype is based on the notion of substitutability; that is, if S is a
subtype of T, then objects of type T in a program may be replaced with objects of type S without
altering any of the desirable properties of that program (e.g., correctness).

In most class-based object-oriented languages, subclasses give rise to subtypes: if S is a subclass
of T, then an instance of class S may be used in any context where an instance of type T is expected;
thus we say S is a subtype of T. A consequence of this is that any variable or parameter declared
as having type T might, at run time, hold a value of class S; in this situation many object-oriented
programmers would say that T is the variable’s static type and S is its dynamic type.

In general, the principle mandates that at all times objects from a class can be swapped with
objects from an inheriting class, without the user noticing any other new behaviour. It has effects
on the paradigms of design by contract, especially regarding to specification:

• postconditions for methods in the subclass should be more strict than those in the superclass;
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class Point
methods

get-x : Self −→ real
get-y : Self −→ real
eq : Self× Self −→ bool

end Point

Figure 1.7: The class Point

class ColorPoint
inherit from Point
methods

get-s : Self −→ string
eq : Self× Self −→ bool

end ColorPoint

Figure 1.8: The class ColorPoint

• preconditions for methods in the subclass should be less strict than those in the superclass;

• no new exceptions should be introduced in the subclass.

For example, a language might allow integer values to be used wherever floating-point values
are expected, or it might define a type number containing both the integers and the reals. In the
first instance, the integer type would be a subtype of the floating-point type; in the second, those
two types might be unrelated to each other by subtyping but both would be subtypes of number.

Typing binary methods is problematic when subclasses are considered as subtypes, i.e. a
subclass object can always be passed to a method expecting a superclass object.

Binary methods when used with overloaded functions or methods in presence of inheritance
have caused great difficulty for designers of object oriented languages and the programmers using
those languages. Figure 1.7 shows the declaration of a class of points in a plane, a standard
example of a class with a binary method. In a typical object oriented programming language all
methods get an implicit first argument of type Self, to denote the type of the class that is being
defined. The type of the first implicit argument is called this in C++, or Current in Eiffel. In
the class Point, the method get-x returns the x-position of the plane, the method get-y returns the
y-position and the method eq is binary. It takes two points as arguments to test for the equality
and returns true, if they are considered as equal.

Figure 1.8 defines a subclass ColorPoint of the class Point. The implementation of method eq
allowing two ColorPoint objects to be compared (taking the color into account), extends the code
for method equal of Point.

In all OO-languages where subclasses are subtypes, the subclass ColorPoint can be used where
an object of the superclass Point is expected. Unfortunately, not always subclasses produce sub-
types. Assume that, we pass a colored point cpt into a method that expects an object of class Point
and further assume that this method calls the method eq with a second argument pt of class Point.
For instance, see Figure 1.9, we call the method breakit of class Point with an actual parameter
colored point cpt ; then, in this case the implementation of class ColorPoint for the method eq
would be called. This code would try to access the color field of pt. Depending on the actual lan-
guage used, this can yield anything between strange results, a runtime exception (possibly caught
by the program), and a crash of the whole system. Because of the contravariance arrow type of
subtyping relation on the domain of eq, ColorPoint is not a subtype of Point. This is not the case
when we use inheritance with overriding (which is a mechanism to provide extended and consistent
behaviour to subclasses) for e.g. see Figure 1.5, it will successfully executes the code for equal in
ColorPoint with the second argument pt of class Point as well as with the second argument cpt
of class ColorPoint. Therefore, the type of argument during inheritance is an important technique
in object-oriented programming.
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class Point
attributes
xValue : int
yValue : int

methods
pt.get-x = pt.xValue
pt.get-y = pt.yValue
pt1.eq(pt2 : Point) =

if (pt1.get-x = pt2.get-x & pt1.get-y = pt2.get-y)
then true
else false

pt1.breakit(pt2 : Point) = if (pt2.eq(pt1))
then true
else false

end class

class ColorPoint extends Point
attributes
sValue : int

methods
cpt.get-s = cpt.sValue
cpt1.eq(cpt2 : ColorPoint) =

if (cpt1.get-x = cpt2.get-x & cpt1.get-y = cpt2.get-y &
cpt1.get-s = cpt2.get-s)

then true
else false

end class

Figure 1.9: An example of Binary method with overloaded functions
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In the last decades many researchers proposed semantic foundations for object-oriented pro-
gramming on the basis of type theory. A large number of different proposals about how to solve
the typing problem with binary methods are compared in [15].

One solution, which is for instance adopted by OCaml, [66, 65], is to separate subtyping and
inheritance following the slogan Inheritance is not Subtyping from [25]. In this approach the
typechecker would forbid the user to pass a colored point to a procedure that expects an ordinary
point. However, this approach is quite restrictive. It denies many useful applications of argument
type specialization.

Another interesting solution is proposed by Castagna in [19]. He suggests to enrich the ba-
sic calculus with multimethods and to use a more intelligent strategy for overriding and method
dispatch. In the above example the method equal of class ColorPoint would have two implementa-
tions. The algorithm of dynamic dispatch would take both argument points into account (instead
of only the first one) when choosing which implementation should be called, therefore it is also
referred as multiple dispatch. For instance, when the method equal is called for the colored point
cpt with an ordinary point pt as argument, the method equal of class Point would be called. The
approach of Castagna is type safe. In Chapter 7 we shall discuss further the issue of typing binary
methods in presence of inheritance, and we propose a somewhat simpler solution, albeit some what
less general than Castagna’s.
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2
An Object-Oriented Language

In this chapter, we present the language Fickle [29, 30], as an example of Java-like OO-language.
Fickle extends Java with re-classification, which allows objects to change class membership dy-
namically, while preserving their identities. We introduce various notions of Fickle’s observational
equivalences. In Chapter 6, we will study a coalgebraic semantics for Fickle and various notions of
observational equivalences. In this chapter, we also introduce typing rules for safe Fickle expres-
sions, classes and programs, in the line of [30]. In Chapter 7, we will discuss an alterative, more
liberal typing system.

2.1 Syntax of Fickle

Fickle syntax is summarized in Table 2.1. A Fickle program P is a collection of (possibly abstract)
class definitions. Fickle extends Java with re-classification. To this aim, a class definition may
be preceded by the keyword state or root. State classes describe the properties of an object
while it satisfies some conditions; when it no longer satisfies these conditions, it can be explicitly
re-classified to another state class. Root classes abstract over state classes. While (state) classes
consist of a sequence of fields and methods, in abstract (root) classes, some methods can only be
declared. We assume the inheritance hierarchy to be a tree. Moreover, any subclass of a state or a
root class must be a state class. Each state class must have a root (possibly indirect) superclass.
Objects of a state class c may be re-classified to a class c′, where c′ must be a subclass of the
uniquely defined root superclass of c. Objects of a non-state, non-root class c behave like Java
objects, i.e. they are never re-classified. The type of fields may be either boolean or integer or a
non-state class. Hence, fields cannot be reclassified. In contrast, the type of this and parameters
may be a state or root class, i.e. these variables may be reclassified.

Objects are created with the expression new c, where c is any class. Re-classification expres-
sions, id ⇓ c, set the class of id to c, where c must be a state class.

Methods declarations have the shape:

t m (t1x1, . . . , tqxq){c1, . . . , cn}{ e }
where t is the result type, t1, . . . , tq are the types of the formal parameters x1, . . . , xq and e is the
body. The list of root classes c1, . . . , cn are the effect, i.e. the root classes of all objects that may
be re-classified by invocation of that method.

For simplicity, we assume all fields in the classes to be private, i.e. to be accessible from outside
the class only through the class methods. On the contrary, we take all methods in a class to be
public. Moreover, we assume no local variables in method bodies.

In Table 2.1, summarizing Fickle syntax, we have omitted the syntax of boolean and integer
expressions, which involve the standard operators.

Example 2.1.1 (Lists in Fickle, [28]) The Fickle program below consists of three classes: the
root class List (which is abstract, since it contains only a sequence of method declarations) together
with two subclasses, EmptyList and NonEmptyList. This program uses re-classification, e.g. in
the method insertFront of the class EmptyList. Some parts of the code are omitted.
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progr := class∗

class := [ root | state ] class c extends c { field∗ meth∗ }
absclass := abstract [ root ] class c extends c { field∗ mdecl∗ }
field := type f
meth := type m (par∗) eff { e }
mdecl := type m (par∗) eff
type := bool | int | c
par := type x
eff := { c∗ }
expr (3) e := if e then e else e | var:=e | e;e | sVal | this | var |

new c | e.m(e∗) | id⇓c
var := x | e.f
sVal := true | false | null | 0 | 1 . . .
id := this | x

with the following conventions
c ::= c | c’ | ci | d | . . . for class names
f ::= f | fi | . . . for field names
m ::= m | mi | mij | . . . for method names
x ::= x | y | z | . . . for parameter names

Table 2.1: Syntax of Fickle

abstract root class List extends Objects{
abstract insertFront(int i){List};
abstract getFront(){List};
abstract setFront(int i){List};
abstract setLast(List x){ }; ...}

state class EmptyList extends List{
void insertFront(int i){List}{

this⇓NonEmptyList; contents:= i;
next := new EmptyList; }

int getFront (){}{ throw new ListException; } ...}

state class NonEmptyList extends List{
int contents;
List next;

NonEmptyList insertFront(int i){}{
NonEmptyList second:= new NonEmptyList;
copyTo(second); contents:= i; next:=second; }

int getFront(){List}{
int result := contents; next.copyTo(this); return result;}

List copyTo(NonEmptyList x){ } {
x.contents := contents; x.next:=next; } ...}

2.2 Fickle’s Operational Semantics

Operational semantics, a fundamental tool in language design and verification, provides a formal
description of the behaviour of programs. It can be either defined as “small-step” operational
semantics, i.e. in terms of atomic, elementary transitions, describing local behaviour, or as “big-
step” operational semantics, i.e. providing final states for each configuration.



2.2. Fickle’s Operational Semantics 19

We describe the operational semantics of Fickle in terms of a “big-step” relation −→, which
rewrites pairs of expressions and stores w.r.t. to a program P into pairs of values, exceptions,
or errors, and stores, representing the final state. The expression which is evaluated is meant to
represent the special method main (external to P ) from which the execution of the program starts.
The type of the rewriting relation is:

−→ : progr → expr × store → (val ∪ dev)× store

where:
addr , Nat
val , sVal ∪ addr
dev , { nullPntrExc, stuckErr }
objectc , {[f1 : v1, . . . , fr : vr]c | f1, . . . , fr ∈ fieldc are

the field identifiers of c, v1, . . . , vr ∈ val }
object ,

⋃
cobjectc

store , ({this} → addr)× (varid →pfin val)× (addr →pfin object) ,

where sVal is defined in Table 2.1, varid is the set of variable identifiers, fieldc is the set of field
identifiers of c, and →pfin denotes the space of partial functions with finite domain. Notice that
an element of objectc is in fact a partial function in (fieldc →pfin val).

In particular, stores are partial functions with finite domain, mapping this to an address,
variables of base type to values, variables of class type to addresses, and addresses to objects.
Notice in particular that, in the store, addresses point to objects, but not to other addresses.
Thus in Fickle, as in Java, pointers are implicit, and there are no pointers to pointers. We denote
addresses with ι, stores with σ, values with v, objects with o, exceptions and errors with dv.

Before introducing the rewriting rules, we need to define some operations on objects and stores.
For object o , [f1 : v1, . . . , fl : vl, . . . fr : vr]c, store σ, value v, address ι, identifier or address z,
field identifier f , we define:

• field access: o(f) ,

{
vl if f = fl for some l ∈ 1, . . . , r,
Udf otherwise

• object update: o[v/f ] , [f1 : v1, . . . , fl : v, . . . fr : vr]c, where fl = f for some l ∈ 1, . . . , r,

• store update: σ[v/z](z) = v, σ[v/z](z′) = σ(z′) if z′ 6= z.

We use the convention that σ(ι)(f) = Udf , whenever σ(ι) = Udf , i.e. ι 6∈ dom(σ).
Tables 2.2, 2.3 and 2.4 list the rewriting rules of the operational semantics.
The evaluation of the expression new c in a store σ extends σ with a new canonical address.

Moreover, all fields of the new object are initialized with canonical values, which we assume, by
convention, to be false and 0 for boolean and integer fields, respectively, and null for fields of class
type. The function FS used in the rule for new (and for re-classification) is such that FS(P, c)
returns the set of fields defined in the class c, while FS(P, c, f), used in the rule for reclassification,
gives the type of the field f in class c.

In the rule for method call, e0.m(e1, . . . , en) in Table 2.2, we use the function M: M(P, c,m)
returns the definition of method m in class c going through the class hierarchy (see [30] for more
details). Moreover, the premise σn(ι) = [...]c means that, in the store σ′n, the address ι refers to
an object of the class c.

For re-classification expressions, id ⇓ d, we find the address of id, which points to an object of
class c. We replace the original object by a new object of class d. We preserve the fields belonging
to the root superclass of c and initialize the other fields of d according to their types (as in the
case of new expressions). The term R(P, t), defined by

R(P, t) ,

{
c if t is a state class and c is the root superclass of t

t otherwise ,
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denotes the least superclass of t which is not a state class, if t is a class, and denotes t itself if t is
not a class.

2.3 Fickle’s Observational Equivalences

Observational equivalences on programming languages are naturally induced by the operational
semantics. Various notions of observational equivalence can be naturally introduced for Fickle.
First of all, one can define a contextual equivalence on main methods w.r.t. a given program P ,
by evaluating the expressions corresponding to the bodies of the main methods in any expression
context C[ ], and by observing the output value. A context is simply an expression with finitely
many holes. As observable values, we take values of base types and errors/exceptions, i.e. obsval ,
sVal ∪dev . With (e, σ) ⇓P u we abbreviate the fact that there exists σ′ such that (e, σ)→P (u, σ′),
for u ∈ sVal ∪ dev .

Definition 2.3.1 (Contextual Equivalence):

Let ≈P⊆ expr × expr be defined by: e ≈P e′
∆⇐⇒

∀C[ ] ∀σ ∀u ∈ obsval . (C[e], σ) ⇓P u ⇔ (C[e′], σ) ⇓P u .

The contextual equivalence ≈P on expressions e, e′ induces an equivalence between a program
P together with a main method whose body is the expression e, and the same program P together
with a main method whose body is the expression e′. Notice that, by the assumption that all
fields in a class are private (see Section 2.1), main methods can only access objects through class
methods. In particular, in Definition 2.3.1 above, field access expressions appear neither in the
expressions e, e′ nor in the context C[ ].

In the definition of the observational equivalence ≈P above, the program P is fixed. However,
in many cases, e.g. in program refinement, we are interested in establishing equivalences between
different programs P1, P2, which implement the same program specification. A simple notion
of program specification can be taken to be a list of abstract classes with no fields and only a
sequence of method declarations. Then a program P1 implements a program specification P , when
the method declarations in each class of P1 correspond exactly to the method declarations in P .
One could consider a more sophisticated notion of program specification, involving a first-order
logic for expressing conditions on the fields. This would be useful for studying program refinement
(e.g. see [73]). By way of example, we introduce the following simple equivalence.

Two programs P1, P2, implementing the same program specification P , can be taken to be
equivalent, when for any possible main method, they evaluate to the same value:

Definition 2.3.2 Let P1, P2 implement the same program specification P . We define the equiva-
lence ' by:

P1 ' P2
∆⇐⇒ ∀e ∀u ∈ obsval . (e, ∅) ⇓P1 u ⇔ (e, ∅) ⇓P2 u .

The expression e in the above definition, being meant to represent a main method, is subject
to the same syntactical restrictions as the expressions involved in Definition 2.3.1.

2.4 Typing Rules for Fickle programs

The following assertions, defined in Table 2.5, describe kinds of classes, and the widening relation-
ship between types:

• P ` c �ct means that c is any class,

• P ` c �rt means that c is a re-classifiable type, i.e. , either a root or a state class,

• P ` c �ft means that t is a field type, i.e. either bool or a non-state class,
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(e, σ) −→P (true, σ′′) (e, σ) −→P (false, σ′′)
(e1, σ

′′) −→P (v, σ′) (e2, σ
′′) −→P (v, σ′)

(if e then e1 else e2, σ) −→P (v, σ′) (if e then e1 else e2, σ) −→P (v, σ′)

(e, σ) −→P (ι, σ′′)
(e′, σ′′) −→P (v, σ′′′)

σ(x) 6= Udf σ′′′(ι)(f) 6= Udf

(e, σ) −→P (v, σ′) σ′ , σ′′′[σ′′′(ι)[v/f ]/ι]
(x := e, σ) −→P (v, σ′[v/x]) (e.f := e′, σ) −→P (v, σ′)

(e1, σ) −→P (v′, σ′′) (e, σ) −→P (ι, σ′)
(e2, σ

′′) −→P (v, σ′) σ′(ι)(f) 6= Udf
(e1; e2, σ) −→P (v, σ′) (e.f, σ) −→P (σ′(ι)(f), σ′)

σ(id) 6= Udf
(id, σ) −→P (σ(id), σ) (v, σ) −→P (v, σ)

FS(P, c) = {f1, . . . , fr}
vl initial for F(P, c, fl) (∀l ∈ {1, . . . , r})
ι is new in σ
(new c, σ) −→P (ι, σ[[f1 : v1, . . . , fr : vr]

c/ι])

(e0, σ) −→P (ι, σ0)
(ei, σi−1) −→P (vi, σi) (∀i ∈ {1, . . . , n})
σn(ι) = [. . .]c

M(P, c, m) = t m(t1x1, . . . , tnxn) φ { e }
σ′ = σn[ι/this, v1/x1, . . . , vn/xn]
(e, σ′) −→P (v, σ′′)
(e0.m(e1, . . . , en), σ) −→P (v, σ′′[this 7→ σn(this), x1 7→ σn(x1), . . . , xn 7→ σn(xn)])

σ(id) = ι
σ(ι) = [. . .]c

FS(P,R(P, c)) = {f1, . . . , fr}
vl = σ(ι)(fl) (∀l ∈ {1, . . . r})
FS(P, d) \ {f1, . . . , fr} = {fr+1, . . . , fr+q}
vl initial for FS(P, d, fl) (∀l ∈ {r + 1, . . . r + q}) (id, σ) −→P (null, σ′)

(id ⇓ d, σ) −→P (ι, σ[[f1 : v1, . . . , fr+q : vr+q]
d/ι]) (id ⇓ d, σ) −→P (null, σ′)

Table 2.2: Operational Semantics: execution without exceptions and errors
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(e, σ) −→P (null, σ′)
(e.f := e′, σ) −→P (nullPntrExc, σ′)
(e.f, σ) −→P (nullPntrExc, σ′)
(e.m(e1, . . . , en), σ) −→P (nullPntrExc, σ′)

(e, σ) −→P (v, σ′)
v 6= true and v 6= false
(if e then e1 else e2, σ) −→P (stuckErr, σ′)

σ(x) = true or σ(x) = false
(x ⇓ c, σ) −→P (stuckErr, σ)

(e, σ) −→P (v, σ′)
v 6= null

σ(x) = Udf v 6∈ addr
(x, σ) −→P (stuckErr, σ) (e.f, σ) −→P (stuckErr, σ′)
(x := e, σ) −→P (stuckErr, σ) (e.f := e′, σ) −→P (stuckErr, σ′)
(x ⇓ c, σ) −→P (stuckErr, σ)

(e, σ) −→P (ι, σ′′)
(e, σ) −→P (ι, σ′) (e′, σ′′) −→P (v, σ′)
σ′(ι)(f) = Udf σ′(ι)(f) = Udf
(e.f, σ) −→P (stuckErr, σ′) (e.f := e′, σ) −→P (stuckErr, σ′)

(e0, σ) −→P (v, σ0)
v 6= null
v 6∈ addr or σ0(v) = Udf
(e0.m(e1, . . . , en), σ) −→P (stuckErr, σ0)

(e0, σ) −→P (ι, σ0)
(ei, σi−1) −→P (vi, σi) (∀i ∈ {1, . . . , n})
σn(ι) = [. . .]c

M(P, c,m) = Udf
(e0.m(e1, . . . , en), σ) −→P (stuckErr, σn)

Table 2.3: Operational semantics: generation of exceptions and errors
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(e, σ) −→P (dv, σ′) or
((e, σ) −→P (true, σ′′) and (e1, σ

′′) −→P (dv, σ′)) or
((e, σ) −→P (false, σ′′) and (e2, σ

′′) −→P (dv, σ′))
(if e then e1 else e2, σ) −→P (dv, σ′)

(e1, σ) −→P (dv, σ′) or ((e1, σ) −→P (v, σ′′) and (e2, σ
′′) −→P (dv, σ′))

(e1; e2, σ) −→P (dv, σ′)

(e, σ) −→P (ι, σ′′)
(e, σ) −→P (dv, σ′) (e′, σ′′) −→P (dv, σ′)
(x := e, σ) −→P (dv, σ′) (e.f := e′, σ) −→P (dv, σ′)
(e.f, σ) −→P (dv, σ′)
(e.m(e1, . . . , en), σ) −→P (dv, σ′)
(e.f := e′, σ) −→P (dv, σ′)

(e0, σ) −→P (ι, σ0)
(ei, σi−1) −→P (vi, σi) (∀i ∈ {1, . . . , q}, q < n)
(eq+1, σq) −→P (dv, σq=1)
(e0.m(e1, . . . , en), σ) −→P (dv, σq+1)

(e0, σ) −→P (ι, σ0)
(ei, σi−1) −→P (vi, σi) (∀i ∈ {1, . . . , n})
σn(ι) = [. . .]c

M(P, c,m) = t m(t1x1, . . . , tn : xn) φ { e }
σ′ = σn[this 7→ ι, x1 7→ v1, . . . , xn 7→ vn]
(e, σ′) −→P (dv, σ′′)
(e0.m(e1, . . . , en), σ) −→P

(dv, σ′′[this 7→ σn(this, x1 7→ σn(x1), . . . , xn 7→ σn(xn)])

Table 2.4: Operational semantics: propagation of exceptions and errors
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` P �u
` P �u P = . . . [root | state]class c extends c′{. . .} . . .

P ` Object v Object P ` c v c
P ` c v c′

P ` c v c′

P ` c′ v c′′

P ` c v c′′

∀c, c′ :
P ` c v c′ and P ` c′ v c =⇒ c = c′

C(P, c) = class c extends c′ {. . .} =⇒ C(P, c′) = class c′ . . .
C(P, c) = root class c extends c′ {. . .} =⇒ C(P, c′) = class c′ . . .
C(P, c) = state class c extends c′ {. . .} =⇒

((C(P, c′) = root class c′ . . .) or (C(P, c′) = state class c′ . . .))
` P �h

` P �h ` P �h
C(P, c) = class c . . . C(P, c) = root class c . . .

P ` c �ft P ` c �ft

P ` c �rt

P ` c �ct

` P �h
C(P, c) = state class c . . .

P ` c �rt

P ` c �ct

P ` c v c′

P ` bool �ft P ` bool ≤ bool P ` c ≤ c′

Table 2.5: Subclasses, well-formed inheritance hierarchy, subtypes

• P ` t ≤ t′ means that type t′ widens type t, i.e. t is a subclass of, or identical to, t′.

Environments, Γ, map parameter names to types, and the receiver this to a class. They have
the form {x1 : t1, . . . , xn : tn, this : c}. Lookup, Γ(id), and update, Γ[id 7→ t], have the usual
meaning, (see [30] for more details).

Typing an expression e in the context of a program P and an environment Γ involves three
components, namely

P,Γ ` e : t[]Γ′[]φ

where t is the type of the value returned by evaluation of e, the environment Γ′ contains the type of
this and of the parameters after evaluation of e, and φ conservatively estimates the re-classification
effect of the evaluation of e on objects.

The typing rules are given in Table 2.6. We use the look-up functions F(P, c, f) andM(P, c,m),
(see [30] for more details), which search for fields and methods through the class hierarchy. We
follow the convention that rules can be applied only if the types in the conclusion are defined. This
is useful in rules (cond) and (id).

Consider the rule (seq) for composition e, e′. The second expression, e′, is typed in the
environment Γ′, i.e. the environment updated by typing the first expression, e. The effect of the
composition is the union of the effects of the components.

Consider now the rule (cond) for conditionals. With t tP t′ we denote the least upper bound
of t and t′ in P with respect to ≤, when it exists1. With Γ tP Γ′ we denote the extension of the

1Note that for any class c the least upper bound c tP bool does not exist
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cond
P,Γ ` e : bool [] Γ0 [] φ
P,Γ0 ` e1 : t1 [] Γ1 [] φ1

P,Γ0 ` e2 : t2 [] Γ2 [] φ2

P,Γ ` (if e then e1 else e2) : t1 tP t2 [] Γ1 tP Γ2 [] φ ∪ φ1 ∪ φ2

a-field a-var
P,Γ ` e : c [] Γ0 [] φ
P,Γ0 ` e′ : t [] Γ′ [] φ′ P,Γ ` e : t′ [] Γ′ [] φ
F(P, φ′@pc, f) = t′ Γ′(x) = t
P ` t ≤ t′ P ` t′ ≤ t
P,Γ ` e.f := e′ : t [] Γ′ [] φ ∪ φ′ P,Γ ` x := e : t′ [] Γ′ [] φ

field seq
P,Γ ` e : c [] Γ′ []φ P,Γ ` e : t [] Γ0 []φ
F(P, c, f) = t P,Γ0 ` e′ : t′ [] Γ′ [] φ′

P,Γ ` e.f : t [] Γ′ [] φ P, Γ ` e; e′ : t′ [] Γ′ [] φ ∪ φ′

bool null
P ` c �ct

P,Γ ` true : bool [] Γ [] { } P,Γ ` null : bool [] Γ [] { }
P,Γ ` false : bool [] Γ [] { }

id new
P ` c �ct

P,Γ ` id : Γ(id) [] Γ [] { } P,Γ ` new c : c [] Γ0 [] { }

meth
P,Γ ` e0 : c [] Γ0 [] φ0

P,Γi−1 ` ei : t′i [] Γi [] φi (∀i ∈ {1, . . . , n})
M(P, (φ1 ∪ . . . ∪ φn)@pc,m) = t m(t1x1, . . . , tnxn) φ { . . .}
P ` (φi+1 ∪ . . . ∪ φn)@pt

′
i ≤ ti (∀i ∈ {1, . . . , n})

P,Γ ` (e0.m(e1, . . . , en)) : t[]φ@pΓn[]φ ∪ φ0 ∪ . . . ∪ φn

recl
P ` c �ct

R(P, c) = R(P,Γ(id))
P,Γ ` id ⇓ c : c [] ({R(P, c)}@pΓ)[id 7→ c] [] {R(P, c)}

Table 2.6: Typing rules for Fickle expressions
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C(P, c) = [root | state] class c extends c′ {. . .}
∀f : FD(P, c, f) = t0 =⇒ P ` t0 �ft and F(P, c′, f) = Udf
∀m : MD(P, c,m) = t m(t1x1, . . . , tnxn) φ { e} =⇒

P ` φ �
P, {x1 : t1, . . . , xn : tn, this; c} ` e : t′ [] Γ′ [] φ′

P ` t′ ≤ t
φ′ ⊆ φ
M(P, c′,m) = udf or

(M(P, c′,m) = t m(t1x1, . . . , tnxn) φ { . . . } and φ ⊆ φ′′)
P ` c �

` P �h
∀c; C(P, c) 6= Udf =⇒ P ` c �

` P �

Table 2.7: Typing rules for Fickle classes and programs

above operation to environments, defined as follows:

Γ tP Γ′ = {id : (t tP t′) | Γ(id) = t and Γ′(id) = t′}

Least upper bounds are used in rule (cond) to determine a conservative approximation of the
type of the conditional expression. The two branches may cause different re-classifications for this
and the parameters. So, after the evaluation we can only assert that this and the parameters
belong to the least upper bound of their relative classes in Γ1 and Γ2.

Consider now the typing of assignments, i.e. rules (a-field) and (a-var). Evaluation of the
right hand side may modify the type of the left hand side. In particular, in (a-var) evaluation of e
can modify the type of x. This is taken into account by looking up x in the environment Γ′. Also,
in rule (a-field) evaluation of e′ may modify the class of the object e. For this purpose, we define
the application of effects to types:

{c1, . . . , cn}@P t =

{
ci if R(P, t) = ci for some i ∈ 1, . . . , n

t otherwise.

Consider now (recl) : id ⇓ c is type correct if c, the target of the re-classification, is a state or
root class, and if c and the class of id before the re-classification (the class Γ(id)) are subclasses
of the same root class. A re-classification updates the environment by changing the class of the
identifier id. Moreover, since there could be aliasing with identifiers of state classes that are
subclasses of the root class of id, the static type of all such variables is set to the root class. For
this reason, we define the application of effects to environments:

φ@P Γ = {id : φ@P t | Γ(id) = t}

Consider rule (meth) for method calls, e′.m((e1, . . . , en)). The evaluation of the arguments
ei+1, . . . , en may modify the types of the arguments e1, . . . , ei and of the object e′. This could
happen if a superclass of the original type of ej(1 ≤ j ≤ i) is among the effects of ei+1, . . . , en.
(Existence of such a class implies uniqueness, since effects are sets of root classes.) The definition
of m has to be found in the new class of the object e0, and the types of the formal parameters
must be compared with the new types of e1, . . . , en−1. In (meth) we look up the definition of m
in the class obtained by applying the effect of the arguments to the class of the receiver and we
compare the types of formal and actual parameters by keeping into account the effects of the actual
parameters.
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A program is well formed (i.e. ` P �) if the inheritance hierarchy is well-formed (i.e. ` P �h)
and all its classes are well-formed (i.e. P ` c �). Fields may not redefine fields from superclasses,
and methods may redefine superclass methods only if they have the same name, arguments, and
result type, and their effect is a subset of that of the overridden method. Method bodies must
be well formed, must return a value appropriate for the method signature, and their effect must
be a subset of that in the signature. See Table 2.7, where C(P, c) returns the definition of class
c in program P , and the look-up functions FD(P, c, f), MD(P, c,m), (see [30] for more details),
search for fields and methods only in class c.

The judgment P, σ ` v / t, guarantees that value v conforms to type t. In particular, it requires
that an address ι points to an object of class c, a subclass of t, that the object contains all fields
required in the description of c, and that the fields contain values which conform to their type in
c. The judgment P,Γ ` σ � guarantees that all object fields contain values which conform to their
types in the class of the objects, and that all parameters and the receiver are mapped to values
which conform to their types in Γ. For formal definitions see [30].

The type system is sound in the sense that a converging well-typed expression returns a value
which agrees with the expression’s type, or nullpntrExc; but it is never stuck.

Theorem 2.4.1 [27] For a well-formed program P , environment Γ, and expression e, such that

P,Γ ` e : t[]Γ′[]φ

if P,Γ ` σ�, and e, σ converges then

− e, σ −→P v, σ′, P, σ′ ` v / t, P, Γ′ ` σ′�,

or

− e, σ −→P nullpntrExc, σ′.
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3
Bialgebraic Preliminaries

In this chapter, we describe the basic notions and results about algebras, coalgebras, bialgebras.
We also discuss congruences, bisimulation and bicongruences. Throughout the thesis, C denotes a
category, and F,G,H,L : C → C denote endofunctors on C.

3.1 Algebras

In this section, following [50], we introduce the basic notions of algebra, algebra morphism and
initial algebra.

An algebra is a set plus some operations on it, and as such is used to describe many kinds of
data types in programming languages, like stacks, lists. For example, let us consider the set of the
integer numbers Z, with sum (a binary operation), negation (a unary operation) and the number
zero (a constant, i.e., a zero-ary operation). This is an algebra. The signature of an algebra is the
information relative to the arity of its operations, their names being influent.

Let us indicate

• A × B the cartesian product of two sets A and B, i.e., the sets of all the ordered pairs of
elements drawn one from each set;

• A×A with the simpler notation A2;

• 1 the singleton set, 1 = {∗};

• disjoint union of the sets A and B with A + B.

Now, the three operations of our algebra can be seen as a single bundle operation from Z2 +Z +1
to Z. The signature of our algebra can be written as [ ]2 + [ ] + 1, where [ ] is a placeholder for the
carrier of choice, Z.

If we consider a generic signature L, an algebra with signature L and carrier X is any function
from L(X) to X, i.e., any function picking a complexly structured value, among whose subparts
there may be values from X, and returning a value from X. Therefore, an algebra consists of a
carrier set with certain functions called constructors, since they represent operations which build
elements of the carrier. For a given signature L, the algebra homomorphisms are those functions
between two L-algebras which preserve the L-structure. Categorically:

Definition 3.1.1 (L-algebra) Let L : C → C. An L-algebra is a pair (X, βX), where X is an
object of C, also named “carrier”, and βX : L(X) → X is an arrow of C, also named “structure”
or “operation”. L-algebras can be endowed with the structure of a category, AlgL, by defining L-
algebra morphisms as follows. f : (X, βX) → (Y, βY ) is an L-algebra morphism if f : X → Y is
an arrow of the category C such that the following diagram commutes
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L(X)
L(f) //

βX

��

L(Y )

βY

��
X

f
// Y

Here are a couple of standard examples, see e.g. [50] for others.

Example 3.1.2 The set of A-labeled lists List(A) comes with functions nil : 1 → List(A) for
the empty list and cons : A×List(A)→ List(A) for constructing a list of type A. By joining the
two constructors to a single one, we form an algebra [nil, cons] : 1 + (A × List(A)) → List(A)
of the functor L(X) = 1 + (A×X).

Example 3.1.3 The set of A-labeled finite binary trees Tree(A) comes with functions nil : 1 →
Tree(A) for the empty tree, and node : Tree(A) × A × Tree(A) → Tree(A) for constructing
a tree out of two subtrees and a (node) label. Together, nil and node form an algebra 1 +
( Tree(A) ×A × Tree(A)) → Tree(A) of the functor L(X) = 1 + (X ×A×X).

3.1.1 Initial Algebras

An algebra is initial if there is exactly one homomorphism from it to any other algebra (with the
same signature, of course). That is, every algebra contains an image of an initial algebra.

Definition 3.1.4 (Initial L-algebra) An algebra βX : L(X)→ X of a functor L is initial if for
each algebra βY : L(Y )→ Y there is a unique homomorphism of algebras f : (X, βX)→ (Y, βY ):

L(X)
L(f) //______

βX

��

L(Y )

βY

��
X

f
//_______ Y

A familiar example of initial algebra is the initial algebra of the functor 1 + [ ], which is
the algebra of natural numbers with zero and successor. This has all the properties of Peano’s
definition. Namely, Initiality implies that the operation 〈0, S〉 : 1 + N → N is an isomorphism,
i.e., that the natural numbers are “as many as” (i.e. isomorphic to) the natural numbers plus
another element, the zero, and that the successor operation S is a bijection from naturals without
zero. This fixes the first four Peano axioms. Minimality yields the induction principle, which is
the fifth axiom.

Both A-labeled lists and A-labeled trees of Examples 3.1.2 and 3.1.3 are initial algebras for the
respective functors.

A natural question which arises is when does an initial algebra exist? In case of class-theoretic
categories, i.e. categories whose objects are classes and whose maps are functions between classes,
the following strong result holds:

Theorem 3.1.5 (Initial Algebra Theorem) Every endofunctor on a class-theoretic category
has an initial algebra.

The above theorem is a refinement of a standard theorem, (see [5] “Lectures on semantics :
The initial algebra and final coalgebra prespectives”) which has been recently obtained by [8, 17]
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3.2 Coalgebras

In this section, following [50], we introduce the basic notions of coalgebra, coalgebra morphism, and
final coalgebra.

A coalgebra is the dual of an algebra. As algebras are used to formalize data types, coalgebras
are used to formalize automata and similar computational systems, or assimilable data types, like
streams, which may be infinite or circular. For instance, let us consider a finite state automaton
with states in the set S, with I as input alphabet and with O as output alphabet. An automaton
is defined by its transition function, taking a pair (state, input) and returning a pair (new state,
output). In a stream, by a function from S× I to S×O. If we apply currying, any function of two
arguments can be conveniently described by an equivalent function consuming its first argument,
and returning another function which consumes the second one. This means, any function from
S× I to S×O can be conveniently described by an equivalent function from S to (S×O)I , where
(S ×O)I is the set of all the functions from I to S ×O. Thus, an automaton with input alphabet
I and output alphabet O is a coalgebra with signature ([ ] × O)I , whose carrier is the set of its
states.

In general, given a signature H, a coalgebra with signature H and carrier X is any function
from X to H(X), i.e., any function picking a value from X and returning a complexly structured
value, among whose subparts there may be values from X. Therefore, a coalgebra consists of
a carrier set with certain operations going out of the carrier set. These are good for describing
destructors or observers, which allows us to observe certain behaviours. Categorically:

Definition 3.2.1 (H-coalgebra) Let H : C → C. A H-coalgebra is a pair (X, αX), where X is an
object of C, also named “state space”, and αX : X → H(X) is an arrow of C, also named “structure”
or “operation” of the H-coalgebra (X, αX). H-coalgebras can be endowed with the structure of a
category, CoalgH , by defining H-coalgebra morphisms as follows. f : (X, αX) → (Y, αY ) is an
H-coalgebra morphism if f : X → Y is an arrow of the category C such that the following diagram
commutes

X
f //

αX

��

Y

αY

��
H(X)

H(f)
// H(Y )

Example 3.2.2 The set of infinite A-labeled streams, String(A), form a coalgebra for the functor
H(X) = A × X. This is given by ( String(A), α : String(A) → H(String(A) ) where α =
〈αhead, αtail〉 consists of two functions αhead : String(A)→ A, αtail : String(A) → String(A),
where αhead yields the first element of an infinite sequence of elements of A, and αtail yields the
remaining string.

3.2.1 Final Coalgebras

A coalgebra is final if there is exactly one homomorphism from any other coalgebra (again, with the
same signature). Dually to initial algebras, final coalgebras contain the image of every coalgebra.

Definition 3.2.3 (Final H-coalgebra) A coalgebra αX : X → H(X) of a functor H is final if
for each coalgebra αY : Y → H(Y ) there is a unique homomorphism of coalgebras, f : (Y, αY )→
(X, αX):

Y
f //________

αX

��

X

αY

��
H(Y )

H(f)
//______ H(X)
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An example of final coalgebra is the familiar coalgebra of streams, see Example 3.2.2.
The following is a very strong result about the existence of final coalgebras of class-theoretic

endofunctors. This strengthens earlier results of Aczel and Mendler [3, 6] and Adamek et al. eds,
[7, 8]. This result has been recently obtained independently by [9] and [17].

Theorem 3.2.4 (Final Coalgebra Theorem) Every endofunctor on a class-theoretic category
has a final coalgebra.

3.3 Bialgebras

In this section, we introduce the basic notions of bialgebra, bialgebra morphism, λ-bialgebra, and
final bialgebra. We start by introducing the notion of 〈L,H〉-bialgebra, which combines the struc-
tures of L-algebra and H-coalgebra independently:

Definition 3.3.1 (〈L,H〉-bialgebra) Let L,H : C → C. An 〈L, H〉-bialgebra is a triple (X, βX , αX),
where X is an object of C, (X, βX) is an L-algebra, and (X, αX) is an H-coalgebra. 〈L,H〉-
bialgebras can be endowed with the structure of a category, BialgL,H , by defining 〈L,H〉-bialgebra
morphisms as follows. f : (X, βX , αX)→ (Y, βY , αY ) is an 〈L,H〉-bialgebra morphism if f : X →
Y is an arrow of the category C such that the following diagram commutes

L(X)
βX //

L(f)

��

X
αX //

f

��

H(X)

H(f)

��
L(Y )

βY

// Y αY

// H(Y )

That is, the morphisms f : (X, βX , αX) → (Y, βY , αY ) of BialgL,H are those morphisms
f : X → Y between the carriers which are both L-algebra and H-coalgebra homomorphisms.

In the above definition the two structures of L-algebra and H-coalgebra are combined inde-
pendently. More interesting is the case where there is a connection between the two structures.
λ-bialgebras [78] are defined as algebra-coalgebra pairs over a common carrier X subjected to a
pentagonal law, which ensures that the same structure can be seen both as a coalgebra in the cat-
egory of L-algebras and as an algebra in the category of H-coalgebras. The notion of λ-bialgebra
is given in terms of a distributive law.

Definition 3.3.2 (Distributive law[12]) Let L,H : C → C. A distributive law of L over H is a
natural transformation (see Appendix 7.3) λ : LH

·⇒ HL.

Definition 3.3.3 (λ-bialgebra) Let L, H : C → C. A λ-bialgebra, for a given distributive law
λ : LH

·⇒ HL, is an 〈L,H〉-bialgebra (X, βX , αX) which satisfies the following pentagonal law:

αX ◦ βX = H(βX) ◦ λX ◦ L(αX)

LHX
λX // HLX

H(βX)

��
L(X)

L(αX)

OO

βX

// X αX

// H(X)

In the above definition the pentagonal law makes αX an L-algebra homomorphism and βX an
H-coalgebra homomorphism, respectively. λ-bialgebras form a subcategory of 〈L,H〉-bialgebra,
Definition 3.3.3 above of λ-bialgebra corresponds to that introduced in [78], apart from the fact
that we are considering λ-bialgebras simply for endofunctors and we are not assuming that L and
H are monads and comonads as in [78].
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The notion of λ-bialgebra, as we have given, corresponds essentially, to the notion of structured
coalgebra of [26, 27]. Structured coalgebras are simply defined as coalgebras on a category of
algebras, formally:

Definition 3.3.4 (Structured Coalgebra) Let L : C → C be a functor and let H+ be a functor
on the category of L-algebras. A structured coalgebra is an H+-coalgebra.

In order to state formally the precise correspondence between λ-bialgebras and structured
coalgebras, we need to introduce the following definition:

Definition 3.3.5 (Functor Lifting) Let F : C → C, F+ : C′ → C′, V : C′ → C be endofunctors;
F+ is called lifting of F along V if V ◦ F+ = F ◦ V .

Theorem 3.3.6 Let L,H : C → C, and let λ : LH
·⇒ HL be a distributive law, then there exists

both a

1. lifting L+ of L to the category of H-coalgebras;

2. lifting H+ of H to the category of L-algebras.

Proof. 1. Let λ : LH
·⇒ HL be a distributive law. We define L+ : CoalgH → CoalgH as

follows:

For any H-coalgebra (X, αX), L+(X, αX) = (LX,αLX), where αLX : LX → H(LX) is
defined by

αLX , λX ◦ LαX

For any f : (X, αX)→ (Y, αY ) H-coalgebra morphism, we define L+(f) as L(f) : LX → LY .
L+(f) is a coalgebra morphism from (HX,λX ◦LαX) to (HY, λY ◦LαY ), since the following
diagrams commute:

LX

(1)

LαX //

L(f)

��

LHX

(2)

λX //

LH(f)

��

HLX

HL(f)

��
LY

LαY

// LHY
λY

// HLY

One can easily check that L+ is a functor on the category of H-coalgebras. In order to show
L+ is a lifting of L, we need to show that V ◦ L+ = L ◦ V , for a functor V : CoalgH → C.
This holds if we consider V to be the forgetful functor (see Appendix 7.3).

2. Let λ : LH
·⇒ HL be a distributive law. We define H+ : AlgL → AlgL as follows:

For any L-algebra (X, βX), H+(X, βX) = (HX,βHX), where βHX : L(HX)→ LX is defined
by

βHX , HβX ◦ λX

For any f : (X, βX)→ (Y, βY ) L-algebra morphism, we define H+(f) as H(f) : HX → HY .
H+(f) is an algebra morphism from (LX,HβX ◦λX) to (LY,HβY ◦λY ), since the following
diagrams commute:

LHX

(1)

λX //

LH(f)

��

HLX

(2)HL(f)

��

HβX // HX

H(f)

��
LHY

λY

// HLY
HβY

// LY

It is easy to check that H+ is a functor on the category of L-algebras. Moreover, H+ is a
lifting of H along the forgetful functor V : AlgL → C.



36 3. Bialgebraic Preliminaries

Using Theorem 3.3.6 above, one can easily show that a λ-bialgebra always induces a structured
(co)algebra. In order to prove the converse, we need to consider the notions of pointed and
copointed endofunctors, and the corresponding notions of (co)algebras. Following [52], we define

Definition 3.3.7 (Pointed Endofunctor) A pointed endofunctor 〈L, η〉 on a category C is an
endofunctor L on C together with a natural transformation η : Id

·⇒ L.

An algebra for a pointed functor 〈L, η〉 is an L-algebra 〈X, β〉 such that the following unit Law
for β hold:

β ◦ ηX = idX

X

idX !!C
CC

CC
CC

C
ηX // LX

β

��
X

Definition 3.3.8 (Copointed Endofunctor) A copointed endofunctor 〈H, ε〉 on a category C
is an endofunctor H on C together with a natural transformation ε : H

·⇒ Id.

A coalgebra for a copointed functor 〈H, ε〉 is an H-coalgebra 〈X, α〉 such that the following
counit Law for α hold:

εX ◦ α = idX

X

α

��

idX

""D
DD

DD
DD

D

HX εX

// X

Definition 3.3.9 A distributive law of a pointed endofunctor 〈L, η〉 over a copointed endofunctor
〈H, ε〉 is a natural transformation λ : LH

·⇒ HL such that the following “coherence laws” hold:

λ ◦ ηH = Hη Lε = εL ◦ λ

HX

ηHX

��

HηX

$$J
JJJJJJJJ LHX

λX //

LεX

��

HLX

εLXzzttttttttt

LHX
λX

// HLX LX

Theorem 3.3.10 Let 〈L, η〉 be a pointed endofunctor on C, and let 〈H, ε〉 be a copointed endo-
functor on C. Then the following notions are mutually equivalent.

1. Distributive laws λ of L over H.

2. Liftings L+ of L to the H-coalgebras along the forgetful functor.

3. Liftings H+ of H to the L-algebras along the forgetful functor.

Proof. (1)⇒ (2) and (1)⇒ (3) Let λ : LH
·⇒ HL be a distributive law of a pointed endofunctor

〈L, η〉 over a copointed endofunctor 〈H, ε〉. In addition to the proof of Theorem 3.3.6 we require
to prove that the liftings are over categories of (co)algebras for (co)pointed functors and that the
liftings are (co)pointed functors.

(1) ⇒ (2) Let L+ : CoalgH → CoalgH be the lifting of L defined in the proof of Theorem
3.3.6. L+ turns out to be a functor over the category Coalg〈H,ε〉 of coalgebras for the copointed
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endofunctors 〈H, ε〉. Let (X, αX) be a coalgebra for 〈H, ε〉, we need to prove that L+(X, αX)
satisfies the counit law:

LX

(a)LαX

��

LidX

��
LHX

(b)

LεX //

λX

��

LX

HLX
εLX

II

(a) commutes, by the counit law.
(b) commutes, since λ is a distributive law between a pointed and a copointed functors.

Now we prove that L+ is itself a pointed endofunctor. Let (X, αX) be an 〈H, ε〉-coalgebra,
let η+

(X,α) : (X, αX) → L+(X, αX) be defined as ηX : X → LX. We left to show that ηX is a
morphism between 〈H, ε〉-coalgebras.

X

(a)

ηX //

αX

��

LX

LαX

��
HX

(b)

ηHX //

HηX ,,

LHX

λX

��
HLX

(a) commutes, from the natural transformation of η .
(b) commutes, by the coherence law for λ.

(1) ⇒ (3) Dually, let H+ : AlgL → AlgL be the lifting of H defined in the proof of Theorem
3.3.6. H+ turns out to be a functor over the category Alg〈L,η〉 of algebras for the pointed endo-
functors 〈L, η〉. Let (X, βX) be a algebra for 〈L, η〉, we need to prove that H+(X, βX) satisfies the
unit law:

LHX

(a)λX

��
HLX

(b)HβX

��

HX
HηX

oo

LidXqq

ηHX
ll

HX

(a) commutes, since λ is a distributive law between a pointed and a copointed functors.
(b) commutes, by the unit law.

Now we prove that H+ is itself a copointed endofunctor. Let (X, βX) be an 〈L, η〉-algebra,
let ε+

(X,β) : (X, βX) → L+(X, βX) be defined as εX : HX → X. We left to show that εX is a
morphism between 〈L, η〉-algebras.

(a)

LHX

λX

��

LεX

		
LX

(b)βX

��

HLXεLX

oo

HβX

��
X HXεX

oo
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(a) commutes, by the coherence law for λ.
(b) commutes, from the natural transformation of ε.

(2) ⇒ (1) Conversely, consider a lifting L+ of L to H-coalgebras, hence UHL+ = LUH , where
UH : Coalg〈H,ε〉 → C is the forgetful functor. Let GH be the left adjoint of UH , UH a GH . A
distributive law λ of L over the endofunctor H can be defined as follows: first take the natural
transformation Lε : UHL+GH = LUHGH = LH ⇒ L, then transpose it across the adjunction
UH a GH obtaining λ̄ : L+GH ⇒ GHL, and finally define λ to be UH λ̄ : UHL+GH = LH ⇒ HL.
It is easy to prove that λ is a distributive law over H.

(3) ⇒ (1) Dually, let H+ be a Lifting of H, take ηH : H ⇒ HL = HULGL = ULH+GL,
transpose it across GL a UL obtaining λ̄ : FLH ⇒ L+GL, and finally define λ to be ULλ̄ :
ULGLH = LH ⇒ HL = ULH+GL.

3.3.1 Final Bialgebras

One of the main motivation for introducing λ-bialgebras is the fact that final coalgebras lift to
final λ-bialgebras and initial algebras lift to initial λ-bialgebras. The proof of these facts is taken
from [11]. The following lemmas are necessary to prove these facts:

Lemma 3.3.11 Let H : C → C be a functor. Let 0 be an initial object of C. Then there is a unique
H-coalgebra structure on the initial object such that it yields an initial H-coalgebra.

Proof. The unique initial morphism !H0 : 0 → H0 gives a H-coalgebra structure on the initial
object 0. For any H-coalgebra 〈X, α〉 there is a unique initial morphism !X : 0→ X, and again by
the initiality property, it is a coalgebra homomorphism.

H0
H!X // HX

0

!H0

OO

!X

// X

αX

OO

Dually, we have the following lemma:

Lemma 3.3.12 Let L : C → C. Let 1 be a final object of C. Then there is a unique L-algebra
structure on the final object such that it yields a final L-algebra.

Proof. The unique final morphism !L1 : L1 → 1 gives a L-algebra structure on a final object 1.
For any L-algebra 〈X, β〉 there is a unique final morphism !X : X → 1, and again by the finality
property, it is an algebra homomorphism.

LX
L!X //

βX

��

L1

!L1

��
X

!X

// 1

Theorem 3.3.13 Let λ : LH
·⇒ HL be a distributive law of functor L over functor H. Then the

initial L-algebra lifts to an initial λ-bialgebra.

Proof. The proof follows from Lemma 3.3.11.
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Theorem 3.3.14 Let λ : LH
·⇒ HL be a distributive law of functor L over functor H. Then the

final H-coalgebra lifts to a final λ-bialgebra.

Proof. The proof follows from Lemma 3.3.12.

3.4 Congruences and Bisimulations

Initial morphisms, i.e. algebra morphisms from initial algebras, induce equivalences which are
congruences w.r.t. algebra operations. Dually, final morphisms, i.e. coalgebra morphisms into final
coalgebras, induce equivalences which have coinductive characterizations in terms of bisimulations.

Before introducing the notions of H-bisimulation and L-congruence, we introduce the notion
of span:

Definition 3.4.1 A span (R, r1, r2) on objects X, Y consists of an object R in C, and two ordered
arrows, r1 : R → X and r2 : R → Y .
Spans on objects X and Y can be ordered as follows:

(R, r1, r2) ≤ (R′, r′1, r′2) ⇐⇒

∃f : R → R′. ∀i = 1, 2. ri = r′i ◦ f .

The notion of binary relation is expressed, in a general categorical setting, as an equivalence
class of monic spans.

As pointed out in [78], H-bisimulations on H-coalgebras can be simply taken to be spans in the
category of H-coalgebras. The following definition due to [78], generalizes the original definition
of [6].

Definition 3.4.2 (H-bisimulation) Let H be an endofunctor on the category C. A span (R, r1, r2)
on objects X, Y is an H-bisimulation on the H-coalgebras (X, αX) and (Y, αY ), if there exists an
arrow of C, γ : R → H(R), such that ((R, γ), r1, r2) is a coalgebra span, i.e.

X

αX

��

R
r1oo r2 //

γ

��

Y

αY

��
H(X) H(R)

H(r1)
oo

H(r2)
// H(Y )

Definition 3.4.3 (L-congruence) Let L be an endofunctor on the category C. A span (R, r1, r2)
on objects X, Y is an L-congruence on the L-algebras (X, βX) and (Y, βY ), if there exists an arrow
of C, γ : L(R)→ R, such that ((R, γ), r1, r2) is an algebra span, i.e.

L(X)

βX

��

L(R)
L(r1)oo L(r2) //

γ

��

L(Y )

βY

��
X Rr1
oo

r2
// Y

In Set, one often only considers bisimulations which are relations, i.e. spans (R, π1, π2), where
R⊆ X × Y is a relation. Notice that every span (R, r1, r2) in Set can be regarded as representing
the relation amounting to the image 〈r1, r2〉(R) ⊆ X × Y . The order on spans corresponds to
relational inclusion of images. Furthermore, the image of a (span) bisimulation is a (relational)
bisimulation (e.g. see [69], Lemma 5.3).

When the two H-coalgebras (X, αX) and (Y, αY ) in the definition above coincide, we will simply
say that the span is an H-bisimulation on the H-coalgebra (X, αX).
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Definition 3.4.4 (〈L,H〉-bicongruence) Let L,H be endofunctors on the category C. A span
(R, r1, r2) on objects X, Y is an 〈L,H〉–bicongruence on the 〈L,H〉-bialgebras (X, βX , αX) and
(Y, βY , αY ), if there exist an algebraic structure γL : L(R) → R, and a coalgebraic structure
γH : R → H(R), such that ((R, γL, γH), r1, r2) is a bialgebra span, i.e.

L(X)

βX

��

L(R)
L(r1)oo L(r2) //

γL

��

L(Y )

βY

��
X

αX

��

R
r1oo r2 //

γH

��

Y

αY

��
H(X) H(R)

H(r1)
oo

H(r2)
// H(Y )

We call λ-bicongruence a bicongruence over λ-bialgebras.

Definition 3.4.5 (λ-bicongruence) Let L,H be endofunctors on the category C. A span (R, r1, r2)
on objects X, Y is a λ-bicongruence on the λ-bialgebras (X, βX , αX) and (Y, βY , αY ), if there exist
an algebraic structure γL : L(R) → R, and a coalgebraic structure γH : R → H(R), such that
((R, γL, γH), r1, r2) is a λ-bialgebra span.

3.5 Bialgebraic Semantics

Initial algebraic semantics are morphisms from initial algebras; final coalgebraic semantics are
morphisms into final coalgebras. As shown in [3], under suitable conditions, the equivalences
induced by initial/final semantics are congruences/bisimulations. Here we recall basic definitions
and results. We start by giving the following technical definition (for the definition of weak pullback
see Appendix 7.3):

Definition 3.5.1 The functor F preserves weak pullbacks if, for all weak pullbacks (P, p1, p2), (F (P ),
F (p1), F (p2)) is a weak pullback.

3.5.1 Algebraic Semantics

Lemma 3.5.2 Suppose that L preserves weak pullbacks. If f : (X, βX) → (Y, βY ) and g :
(Z, βZ)→ (Y, βY ) are morphisms, then the pullback of f and g in C is an L-congruence on (X, βX)
and (Z, βZ)

Proof. The proof follows immediately from Definition 3.5.1. There exists γL : LP → P because
LP together with βX ◦ Lp1 : LP → X and βZ ◦ Lp2 : LP → Z is a cone for f and g.

LP

(3)
Lp1

vv

Lp2

((
γL

��

LX

(1)
βX

��1
11

11
11

11
11

11
1 Lf

// LY

(2)

βY

��1
11

11
11

11
11

11
1 LZ

Lg
oo

βZ

��1
11

11
11

11
11

11
1

P

p1

vv

p2

((
X

f
// Y Zg
oo

(1),(2) commutes, by algebraic homomorphisms.
(3) commutes, since there exists γL : LP → P , such that (γL, p1, p2) is an algebraic span.
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The generalization in a categorical context of the set-theoretic notion of equivalence induced
by a morphism on its domain is the notion of kernel pair (see Appendix 7.3) of a morphism. The
following theorem ensures that initial algebra morphisms induce equivalences which are congruences
w.r.t. the algebraic structure:

Theorem 3.5.3 Suppose that L : C → C preserves weak pullbacks and it has an initial L-algebra
(IL, βIL

). Let (X, βX) be a L-algebra, and let I : (IL, βIL
) → (X, βX) be the unique initial

morphism. Then, the kernel pair of I is a L-congruence.

Proof. The proof follows from the Lemma 3.5.2 using definition of kernel pair. Let us denote
(R, r1, r2) be the kernel pair of I. There exists γL : LR → R, such that following diagram
commute:

LR
Lr1

vv

Lr2

((
γL

��

LIL

βIL

��2
22

22
22

22
22

22
22 LI

// LX

βX

��1
11

11
11

11
11

11
11

LIL
LI

oo

βIL

��2
22

22
22

22
22

22
22

R

r1

vv

r2

((
IL I

// X ILI
oo

3.5.2 Coalgebraic Semantics

If the functor H preserves weak pullbacks, then pullbacks of H-coalgebra morphisms are H-
bisimulations:

Lemma 3.5.4 Suppose that H preserves weak pullbacks. If f : (X, αX) → (Y, αY ) and g :
(Z, βZ) → (Y, αY ) are morphisms, then the pullback of f and g in C is an H-bisimulation on
(X, αX) and (Z,αZ)

Proof. The proof follows immediately from Definition 3.5.1.

P

(3)
p1

vv

p2
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γH

��

X

(1)αX

��2
22

22
22

22
22

22
22 f

// Y
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��2
22
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Zg
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αZ

��1
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1

HP
Hp1

vv

Hp2

((
HX

Hf
// HY HZ

Hg
oo

(1),(2) commutes, by coalgebraic homomorphisms.
(3) commutes, since there exists γH : P → HP , such that (γH , p1, p2) is a coalgebraic span.

The following theorem generalizes the fact that, in set-theoretic categories, equivalences in-
duced by unique morphisms into final coalgebras can be characterized coinductively as greatest
H-bisimulations.
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Theorem 3.5.5 Suppose that H : C → C preserves weak pullbacks and it has a final H-coalgebra
(ΩH , αΩH

). Let (X, αX) be a H-coalgebra, and let M : (X, αX) → (ΩH , αΩH
) be the unique final

morphism. Then

(i). for all H-bisimulations (R, r1, r2) on (X, αX), M◦ r1 =M◦ r2;

(ii). the kernel pair of M is an H-bisimulation on (X, αX).

Proof. (i). The proof follows from Lemma 3.5.4 using the finality property.

(ii). The proof follows immediately from Lemma 3.5.4 and the definition of kernel pair.

3.5.3 Bialgebraic Semantics

The main motivation for introducing λ-bialgebras (or structured coalgebras) is to extend in the
bialgebraic setting Theorem 3.5.5 of Section 3.5.2 in such a way that the equivalence induced by the
final morphism is both a bisimulation and a congruence. This follows from the following theorem
proved by [11]:

Theorem 3.5.6 Let λ be a distributive law of the functor L over the functor H. The greatest
bisimulation R ⊆ X×Y between any two λ-bialgebras (X, βX , αX) and (Y, βY , αY ) is a congruence.

Lemma 3.5.7 Let λ be a distributive law of the functor L over the functor H. Assume that
there exists a final λ-bialgebra (ΩH , βΩH

, αΩH
). Let (X, βX , αX) be a λ-bialgebra and let M :

(X, βX , αX)→ (ΩH , βΩH
, αΩH

) be the unique final morphism. If H preserves weak pullbacks, then
the kernel pair of M is an 〈L,H〉-bicongruence on (X, βX , αX).

Proof. The proof follows from Theorems 3.5.6, 3.5.5 and 3.3.14. There exists γL : LR → R and
γH : R→ HR such that ((R, γL, γH), r1, r2) is a λ-bialgebra span.
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4
Bialgebraic Specifications

The concept of algebraic specification originated in the pioneering work of Guttag, Liskov, Zilles,
[36, 58]. For Object Oriented languages, Reichel [64] proposed to use coalgebras for specifying
classes and objects. Recently [45], bialgebras have been proposed for specifying classes and objects
of OO-Languages. In this chapter, we first present basic concepts of (co)algebraic specifications.
Then, we focus on bialgebraic specifications of OO-Languages. We will introduce the notions of
class specification and class implementation, together with various examples.

4.1 (Co)algebraic Specifications

An algebraic specification provides a description of both the syntax and semantics of an abstract
data type, by stating its properties as axioms, which relate the operations of the data type to each
other. Algebraic specification refers to the use of algebraic semantics and equational reasoning for
functional systems [80, 81]. Following Ehrig, Mahr, “Fundamentals of Algebraic specifications 1”,
[31], we present here some basic notions about algebras and algebraic specifications.

Definition 4.1.1 A specification Γ is a pair (Σ, E), consisting of a signature Σ = (Σn)n∈N, i.e.
a family of operation symbols (we write op : n for op ∈ Σn) and a set E of Σ-equations.

Definition 4.1.2 A Σ-algebra A = 〈|A|, (opA)op∈Σ〉 consists of a carrier set |A| and a family of
operations such that opA : |A|n → |A| if op : n ∈ Σ. Σ-algebras can be endowed with the structure
of a category, AlgΣ, by defining a Σ-algebra homomorphism f : A→ B (i.e. f : (|A|, (opA)op∈Σ)→
(|B|, (opB)op∈Σ)) as a function f : |A| → |B| between carriers which respects the operations, i.e.
opB ◦ fn = f ◦ opA.

|A|n
fn

//

opA

��

|B|n

opB

��
|A|

f
// |B|

Let TΣ be the term algebra over Σ and, for a given set X of variables, let TΣ(X) be the algebra
of Σ-terms with variables in X. We denote the set of variables actually occurring in a term t by
ν(t). The term algebra TΣ is an initial object in AlgΣ. An assignment for a set of variables X
into a Σ-algebra A is a function v : X → |A|. The term algebra TΣ(X) is free over X in AlgΣ : if
v : X → |A| is an assignment for X into A, its free extension is denoted by v̄ : TΣ(X)→ A.

A Σ-equation (over X) is a pair of terms s = t with s, t ∈ TΣ(X). For each assignment
v : X → |A|, if v̄(s) = v̄(t), then Σ-equation is satisfied in a Σ-algebra A.

Definition 4.1.3 An algebraic specification Γ = 〈Σ, E〉 is a specification for a given Σ-algebra A,
if A satisfies all equations in E. Here A is called Γ-algebra.

The idea behind algebraic specifications is that an abstract data type (ADT) can be described
by giving
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List(A) :
Signature :

nil : 1→ X
cons : A×X → X
head : X → A
tail : X → X
isEmpty : X → B

Axioms :
isEmpty(nil) = true
isEmpty(cons(a, l)) = false
head(cons(a, l)) = a
tail(cons(a, l)) = l

Figure 4.1: Example of Specification for List

1. a signature, which is a list of the names and types of the ADT’s operations (an operation’s
type is given by its domain and range), and

2. a set of equations (called axioms), which convey the intended meaning (i.e. semantics) of
those operations. Usually, ADT’s operations are modeled by (mathematical) functions.{

nil : 1→ X

cons : A×X → X

{
head : X → A

tail : X → X

More generally, algebraic specifications can be defined not only for Σ-algebras, but for generic
T -algebras, where T defines the type of the algebra operations. For instance, one can describe
a list by giving their constructors nil and cons on the left above. An A-labelled list is either
the empty list nil or a non-empty list (a, l) where l is a list and a ∈ A is a label. Dually,
we can define coalgebraic specifications, by considering coalgebraic signatures, where operations
have type X → T . A coalgebraic specification of A-labelled list is given on the right above. It
gives the “destructors” head and tail operations, head evaluates the front of the list and tail
evaluate the remaining list by removing the head from the given list. By considering a mixed
algebraic/coalgebraic signature, we get a bialgebraic specification. An example of a bialgebraic
specification for A-labelled lists is presented in Figure 4.1.

The algebraic part is given by the constructors nil and cons. The coalgebraic part consists of
operations (destructors) head, tail and isEmpty. The behaviour of the operations is specified by
the axioms in Figure 4.1.

As another example, let us consider the ADT stack. A stack is a “container” in which items
are held one on top of another and in which both insertions (push) and deletions (pop) of items
are done at the same end, called the top. Also, only the item occupying the top of the stack is
observable.

Stack(A) : -the specification is parameterized by the data type
of the elements to be stored in the stack

Signature :
new1 : 1→ X -yields the empty stack
new2 : A×X → X -yields stack obtained by placing item at top
isEmpty : X → B -answers “Is the stack empty?”
top : X → A -yields item at top of the stack
push : X ×A→ X -yields stack obtained by inserting item at top
pop : X → X -yields stack obtained by deleting top item

In the above specification, new1 and new2 are constructors, while isEmpty, top, push, and pop
are the destructors. An A-labelled stack is either the empty stack new1 or build a non-empty stack
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new2 of the form (s, a) where s is the stack and a ∈ A is a label. The destructor, isEmpty is used
to know wheather the stack is empty or not, and top returns a a non-empty stack (s, a).

Now we apply these operations for stacks or as observing properties of stacks. Assume that A
(say Z) is an integer, we can form expressions such as

1. new2(new1, 6)
It creates a stack containing 6.

2. push(push(pop(push(push(new1, 3), 9)), 5), 2)
It denotes the stack containing 3, 5, and 2. (The 9 was pushed, but then popped.) Hence, a
somewhat simpler expression intended to denote the same stack is
push(push(push(new1, 3), 5), 2)
therefore one easily describe a stack containing v1, v2, . . . , vn, from bottom to top. Then the
simplest expression for it would be
push(push(...(push(push(new1, v1), v2), . . .), vn−1), vn)

3. isEmpty(pop(push(pop(push(new1, 5)), 2)))
It results true or false, according to whether the expression serving as the argument of
isEmpty denotes the empty stack. In this case it is true.

Here are the axioms for Stack, which specify the behaviour of the operations.
Axioms:

1. isEmpty(new1) = true
It says that the stack has the property of being empty.

2. new2(s, x) = push(s, x)
It says that a stack can be obtained by inserting first element x to the stack s, making it not
empty.

3. isEmpty(push(s, x)) = false
It says that any stack obtained by pushing some element x onto some stack s is not empty.

4. isEmpty(s) = true⇒ top(s) = ∗
It says that the stack has the property of being empty means top of the stack is ∗.

5. top(push(s, x)) = x
It says that the element x is on top of the stack obtained by pushing x onto any stack s.

6. pop(push(s, x)) = s
It says that, if we pop a stack obtained by pushing some element x onto some stack s, we
get the stack s as the result.

Does every possible stack is describable via an expression that is pop-free? The solution is yes.
For instance, consider the following expression

pop(push(push(pop(push(push(new1, 5), 2)), 0), 3))

It contains subexpressions of the form pop(push(s, x)). By Axiom (6), this subexpression is equiv-
alent to s. Applying this at two places in the above expression, we get,

(push(push(new1, 5), 0).

We can write the above “transformation” as follows:

pop(push(push(pop(push(push(new1, 5), 2)), 0), 3))

= 〈 Axiom(6), with s := push(new1, 5) and x := 2 〉
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pop(push(push(push(new1, 5), 0), 3))

= 〈 Axiom(6), with s := push(push(new1, 5), 0) and x := 3 〉

push(push(new1, 5), 0).

Hence, any expression satisfying the above axioms can be reduced to a pop-free expression.
We are given the more general case of bialgebraic specification. However, the interesting cases

are those where the bialgebra is a λ-bialgebra.

4.2 Class Specifications and Class Implementations

A class specification is like an abstract class, in which signatures of constructors and methods
declarations are given without their actual implementation, and also assertions are given x which
put constraints on the behaviour of methods and constructors of the signature. Implementations
of the constructors and the methods satisfying the assertions in the class specification, are given
in the class implementation, also called concrete class or simply class. The essentials are put in
the class specifications and the particulars are in the class implementation.

Formally, we define:

Definition 4.2.1 A class specification S is a structure consisting of

• a finite set of constructor declarations

c : T1 × . . .× Tp → X

where Ti is either a basic type or a symbol X denoting a class type;

• a finite set of method declarations

m : X × T1 × . . .× Tq → T0

where Ti, i 6= 0 is either a basic type or X, while T0 can be polynomial combination of X
and basic type;

• a finite set of assertions, regulating the behaviour of the objects belonging to the class.

The language for assertions is any first order language with constant symbols and function
symbols for denoting constructors, methods and (extensions of) behavioural equivalences at all
types. Typical assertions are equations, e.g. see [68] for more details.

A class (implementation) consists of attributes (fields), constructors and methods. Attributes
and methods of a class can be either private or public. For simplicity, we assume all attributes to
be private, and all methods to be public. We do not use a specific programming language to define
classes, since we are working at a semantic level. Any programming language would do. In this
perspective, a class will be represented by a set (of objects) X; a field f of type T is represented
by a function f : X → T ; the code corresponding to a constructor declaration c :

∏p
j=1 Tj → X

is given by a set-theoretic function β :
∏p

j=1 Tj → X, while the code corresponding to a method
declaration m : X ×

∏q
j=1 Tj → T0 is given by a set-theoretic function α : X ×

∏q
j Tj → T0.

Summarizing:

Definition 4.2.2 A class C = 〈X, {fi : X → Ti}ni=1, {ci :
∏pi

j=1 Tij → X}hi=1, {mi : X ×∏qi

j=1 Tij → Ti0}ki=1〉 is defined by

• a set of objects/states X;

• functions fi : X → Ti representing fields;

• functions βi :
∏pi

j=1 Tij → X implementing constructors ci;
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• functions αi : X ×
∏qi

j=1 Tij → Ti0 implementing methods mi.

Definition 4.2.3 A class C implements a specification S if constructor and method declarations
correspond, and their implementations satisfy the assertions in S.

Class specifications correspond to bialgebraic specifications, where the algebraic part is given
by constructors, and the coalgebraic part is given by methods, when these are viewed in uncurried
form, i.e. m : X → [

∏q
j=1 Tj → T0]. In Section 5.2 of Chapter 5, we will extensively discuss the

categorical bialgebraic account of class specifications and classes.

4.3 Examples of Class Specifications

In this section we present four examples of bialgebraic specifications, see Table 4.1. We start with
a specification of a class Stack(A), which is borrowed from [49], and specifies the recursive data
type of stacks with elements in A. As it is customary in OO-languages such as Java, we use the
same name new for all constructors, which differ in the number and type of their parameters. The
symbol ≈ in the assertions denotes equality on objects of class type. All methods in this example
are unary. Notice the use of the “dot-notation” for method calls.

Our second example of class specification, Register, features binary method eq for comparing
the content of two registers, and unary methods set and get. The method set sets the value
of a register, giving a new state; using the method get we can get the value of a register. In
the algebraic part, we have constructor new forming an element of type Register. One should
read the equation r.set(n).get = n as: if one sets state r the set message ’set’ with parameter n
and then asks for the value ’get’, then the outcome is same as the value n. And the equation
r1.get = r2.get ⇔ r1.eq(r2) = true as: if one asks the value ’get’ of the state r1 is ’equal to’ the
value ’get’ of the state r2, then the outcome is same as asking the state r1 for equality ’eq’ with
parameter r2 is ’true’. The equation new.get = 0 of the specification mentions that the value of a
newly created object of Register class is 0.

The class specification λ-calculus in Table 4.1, which generalizes the one in [41], represents
the recursive data type of λ-terms under lazy evaluation, see [2]. There are three constructors,
corresponding to the syntax of λ-terms: variable, application and abstraction, namely

M ::= z | MM | λz.M

for z ranging over an infinite set of variables. Method isval tests whether a λ-term converges, i.e.
it reduces to an abstraction, according to the leftmost strategy. Lazy convergence, denoted by ⇓,
is defined as follows:

λz.M ⇓ λz.M
M [N1/z]N2 . . . Nk ⇓ P
(λz.M)N1 . . . Nk ⇓ P

The first assertion in the class specification of λ-calculus expresses the fact that method app is
a binary method which behaves like the constructor for application. The second assertion is used
to axiomatize the notion of convergence.

As we will see, the class specification concerning λ-calculus is intended to give the standard
notion of lazy observational equivalence when restricted to closed λ-terms.

A more sophisticated example of a generalized binary method is given by the cell-component
of a cellular automaton. In the general case, where neighborhoods can vary at each generation,
they can be best specified using sets of cells.

In Table 4.2, we present the classes T,R,Λ, C, implementing the corresponding class specifi-
cations. Constructor codes are omitted. Notice that the code in the implementation of Λ is not
effective, since it uses the predicate ⇓ as a primitive, which is only semidecidable. It couldn’t be
otherwise.

Figure 4.2 shows an implementation of the class Stack in language Fickle, and following the
syntax of OCaml [53], Figure 4.3 shows an implementation of the class Register.
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class spec : Stack(A) class spec : Register
constructors : constructors :

new : 1→ X new : 1→ X
new : X ×A→ X methods :

methods : set : X ×N → X
push : X ×A→ X get : X → N
pop : X → X eq : X ×X → B
top : X → 1 + A assertions :

assertions : r.set(n).get = n
s.push(a).top = a r1.get = r2.get⇔
s.push(a).pop ≈ s r1.eq(r2) = true
s.top = ∗ ⇒ s.pop ≈ s new.get = 0
new.top = ∗ end class spec
new(s, a) ≈ s.push(a)

end class spec

class spec : λ-calculus class spec : Cell
constructors : constructors :

new : X ×X → X new : N ×N × State → X
new : V ar → X methods :
new : V ar ×X → X getx : X → N

methods : gety : X → N
isval : X → B getstate : X × State→ X
app : X ×X → X setneighborhood : X × P(X)→ X

assertions : setneighborhood : X → P(X)
new(M,N) ≈M.app(N) assertions :
M.isval = true⇔ . . .
∃zN. M ≈ new(z,N) end class spec

end class spec

Table 4.1: Examples of Class Specifications.
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class T class R
attributes : attributes :

first : 1 + A val : int
next : T constructors :

constructors : ....
.... methods :

methods : r.get = r.val
s.push(a) = s′ r.set(n) = r′

where s′.first = a and where r′.val = n
s′.next = s r1.eq(r2) = if (r1.get = r2.get)

s.pop = if s.first = ∗ then true
then s else s.next else false

s.top = s.first end class
end class

class Λ class C
attributes : attributes :

term : λ-string valx : int
constructors : valy : int

.... neighborhood : P(X)
methods : state : State

M.isval = if M.term ⇓ constructors :
then 〈true, M〉 ....
else 〈false, M〉 methods :

M.app(N) = P ....
where P.term = (M.term)(N.term) end class

end class

Table 4.2: Examples of Classes Implementing the Class Specifications.
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class StackException extends Exception{
}

abstract root class Stack extends Objects{
abstract void push(int i){Stack};
abstract void pop(){Stack};
abstract int top(){Stack};
abstract bool isEmpty(){Stack} }

state class EmptyStack extends Stack{
void push(int i){Stack}{

this⇓NonEmptyStack; element:= i;
next := new EmptyStack; }

void pop(){}{ throw new StackException; }
int top(){}{ throw new StackException; }
bool isEmpty(){} { return true; } }

state class NonEmptyStack extends Stack{
int element;
Stack next;

void push(int i){}{
NonEmptyStack second:= new NonEmptyStack;
element:= i; next:=second; }

void pop(){Stack}{
int value := element;
if (this.next.isEmpty()) {

this⇓EmptyStack; }
else {

this.element := ((NonEmptyStackthis.next).element;
this.next := ((NonEmptyStackthis.next).next; } }

int top(){Stack}{
int value := element; return value }

bool isEmpty(){} { return false; } }

Figure 4.2: Implementation of class Stack in Fickle

# class reg1 =
object (self: ’a)

val mutable rp = 0
method getx = rp
method setx x = rp ← x
method eq (p: ’a) = rp = p#getx

end;;

Figure 4.3: Implementation of class Register in OCaml
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5
Bialgebraic Semantics for Binary

Methods

In the coalgebraic approach of [64, 47, 49], a class is modeled as an F -coalgebra (A, f : A→ F (A))
for a suitable functor F . The carrier A represents the space of objects, and the coalgebra operation
f represents the public methods of the class, i.e. the methods which are accessible from outside the
class. Methods are viewed as functions acting on objects. The coalgebraic model, i.e. the unique
morphism into the final F -coalgebra, induces precisely the behavioural equivalence on objects,
whereby two objects are equated if, for each public method, the application of the method to the
two objects, for any list of parameters, produces equivalent results. A benefit of this coalgebraic
approach is a coinduction principle for establishing behavioural equivalence.

In this chapter, in order to account also for class constructors, we introduce an algebra part in
our model, thus modelling classes as bialgebras. A similar move appears in [68, 23].

Binary methods, i.e. methods with more than one class parameter, apparently escape Reichel-
Jacobs co(bi)algebraic approach. Namely, the extra class parameters produce contravariant occur-
rences in the functor modelling class methods, and hence cannot be dealt with by a straightforward
application of the standard coalgebraic methodology.

In this chapter, we present a bialgebraic model of class specifications and implementations as
defined in Chapter 4, Section 4.2. First, we discuss the case of unary methods, then we extend
Reichel-Jacobs approach to generalized binary methods, these are methods whose type parameters
are built over constants and class variables, using products, sums and the powerset type construc-
tor. This is a quite large collection of methods, including all the methods which are commonly
used in Object Oriented Programming.

Our focus of interest are equivalences on objects which are “well-behaved”, i.e. are congru-
ences w.r.t. method application. Hence they induce a minimal implementation of the given class
specification, by considering the quotient of the class through the equivalence.

In this chapter, we show that canonical models can be built also for classes with generalized
binary methods using purely covariant tools, at least in the case of finitary binary methods, i.e.
methods where type constructors range over finite product, sum, and powerset. We propose two
different solutions. Our first solution applies to the case where we already have a class imple-
mentation. It is based on the observation that the behaviour of a generalized binary method can
be captured by a bunch of unary methods obtained after a suitable manipulation of the original
method. The key step is that of “freezing”, in turn, the types of the class parameters to the states
of the class implementation given at the outset, i.e. by viewing them as constant types.

Our second solution is based on a set-theoretic understanding of functions, whereby binary
methods in a class specification can be viewed as graphs instead of functions. Thus contravariant
function spaces in the functor are rendered as covariant sets of relations.

We prove that the bisimilarity equivalence induced by the “freezing approach” amounts to
the greatest congruence w.r.t. method application on the given class, at least for finitary binary
methods. As a by-product, we provide a (coalgebraic) coinduction principle for reasoning about
such greatest congruence.
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As far as the graph model is concerned, the bisimilarity equivalence is not a congruence, in
general, even for finitary binary methods. The graph approach, however, yields an equivalence
which always includes the freezing equivalence. Therefore, but somewhat remarkably, a necessary
and sufficient condition for the graph bisimilarity to be a congruence is that the graph and freezing
equivalence coincide. As a consequence, when this is the case, we obtain a spectrum of coinduction
principles for reasoning on the greatest congruence.

We present various non-trivial examples of class specifications and implementations, where the
graph bisimulation is a congruence.

A natural question to ask when the freezing approach does not coincide with the graph approach
is why is it the case. We do not have a fully satisfactory answer, but we feel that this is a telltale
alarm. Something is underspecified in the public interface of the class. A similar comment can be
made when no maximal congruence exists in the realm of infinitary binary methods.

We emphasize the fact that, in the case of finitary binary methods, we do provide satisfactory
canonical models, which can be conveniently understood in terms of final coalgebras, for suitable
derived functors. The existence of a final coalgebra is important, since it provides a canonical
implementation of a given specification. Since we do not want to introduce unnecessary restrictions
due to the choice of our ambient category, we work in the category of sets and proper classes [6, 32],
where all endofunctors can be shown to have a final coalgebra, see Chapter 3, Section 3.2.1. Thus,
throughout the chapter, we fix C to be a category whose objects are the sets and classes of a
(wellfounded or non-wellfounded) set-theoretic universe, and whose morphisms are the functions
between them.

Comparison with Related Work

There are other approaches in the literature which address the problem of extending the coalgebraic
model to binary methods. We offer the following analysis.

In [48], binary methods are allowed only when they are definable in terms of the unary methods
of the class. Hence, in particular binary methods do not contribute to the definition of the obser-
vational equivalence. The same observation applies to the approach of [38], where binary methods
are defined as algebraic extensions, thus only the case where the resulting type is the class itself is
considered. Our approach is more general, since we do not require any connection a priori between
binary and unary methods in the class.

Binary methods in full generality have been extensively studied in [76, 77], where various classes
of mixed covariant-contravariant functors have been considered, and a theory of coalgebras and
bisimulations has been studied for such functors. Tews’ approach is very interesting, but quite
different from our approach, since we use only covariant tools, from the very outset. Nonetheless,
there are interesting connections between the two approaches. We consider also the powerset type
constructor, which Tews does not include, but, apart from this, our generalized binary methods
should correspond, essentially, to the class of extended polynomial functors of Tews1. Similarly,
our finitary generalized methods should correspond to Tews’ extended cartesian functors. Tews’
bisimulations amount to congruence relations, and do not give rise, in general, to a coinduction
principle, since the union of all congruences fails to be a congruence. However, for extended
cartesian functors, the union of all congruences is again a congruence, [63, 77]. Our notion of
freezing bisimulation is weaker, in the sense that any bisimulation in the sense of Tews is a freezing
bisimulation, but not vice versa. Moreover, our notion of bisimulation, being monotone, gives
always rise to a coinduction principle. However, the greatest freezing bisimulation fails, in general,
to be a congruence. It is a congruence (the greatest one, in fact) exactly in the case of finitary
methods. Thus, in this case, our notion of bisimilarity equivalence coincides with the one by
Tews.To conclude this comparison, we make the following two remarks. First, our approach is
more elementary. By modeling binary methods with purely covariant functors, we can reuse the
standard coalgebraic machinery. On the other hand, Tews develops a theory of coalgebras and

1Apparently, Tews’ extended polynomial functors cover a wider collection of methods, but we conjecture that also
those particular cases which appear to escape from our approach should be recovered using manipulations similar
to those introduced in Section 5.4. However, more work needs to be done.
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bisimulations for mixed functors, which has interest also in itself. Second, in our setting, final
coalgebras always exist, and hence we have canonical models, while in [77] mixed functors do not
admit final coalgebras.

Yet another approach in the theory of coalgebraic semantics consists in avoiding binary methods
altogether by considering a whole system of objects in place of single objects, e.g. by considering a
class representing a list of points, in place of a class for a single point, see [13, 46]. This approach
is quite different from ours.

Finally, there is an interesting connection between our approach and the approach of hidden
algebras, see [34, 67], where the focus is on behavioural congruences, rather than on bisimulations.
Our freezing model has the positive features of both approaches: the behavioural equivalence that
we define is both a greatest bisimulation and the greatest congruence w.r.t. method application.

5.1 Generalized Binary Methods

In this chapter, we will focus on class implementations and class specifications as defined in Chap-
ter 4, Section 4.2, and we assume that the methods appearing in such classes are generalized
binary. Generalized binary methods are methods, whose parameter types are (infinitary) gener-
alized. According to the following definition, finitary generalized types correspond to polynomial
types extended with finite powerset, while (infinitary) generalized types extend the previous class
of types with possibly infinitary sums, products and powerset constructors.

Definition 5.1.1 (Generalized Parameter Types)

• Finitary Generalized Types range over the following grammar:

(TF 3) T ::= X | K | T × T | T + T | Pf (T ) ,

where X ∈ TVar is a variable for class types, and K is any constant type. Constant types
include Unit, denoted by 1, Boolean, denoted by B, Integer, denoted by N.

• (Infinitary) Generalized Types range over the following grammar:

(T 3) T ::= X | K |
∏
i∈I

Ti |
∑
i∈I

Ti | P(T ) ,

where I is a possibly infinite set of indices.

Notice that the product type
∏

i∈I Ti in Definition 5.1.1 above subsumes the function space
K → T . That is, we allow functional parameters, where variable types can appear only in strictly
positive positions.

For simplicity, in this chapter we will consider only one class in isolation. There would be no
additional conceptual difficulty in dealing with the general case.

Throughout the chapter, we fix the following terminology:

Definition 5.1.2 (Binary Methods) Let m : X×T1× . . .×Tq → T0 be a method, with T0 ∈ T .
Then

• m is (generalized) binary if T1, . . . , Tq ∈ T ;

• m is finitary binary if T1, . . . , Tq ∈ TF ;

• m is simple binary if T1, . . . , Tq are either constants or the class type X;

• m is unary if T1, . . . , Tq are all constant types.

Notice that, our simple binary methods correspond to ordinary binary methods. Throughout
the chapter, generalized binary methods will be often simply called binary methods.
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5.2 Bialgebraic Description of Objects and Classes: unary
case

In this section, we illustrate the bialgebraic description of class specifications and class imple-
mentations of Chapter 4, Section 4.2, in the case of unary methods. We extend the coalgebraic
description of [64, 47] with an algebra part modelling class constructors. A similar move appears
also in [68, 23].

We start by explaining how a class specification induces a pair of functors.
Each constructor declaration c :

∏p
j=1 Tj → X in a class specification determines a functor

L : C → C defined by

LX =
p∏

j=1

Tj . (5.2.1)

In this way, c : LX → X will induce an L-algebra structure on X.
The treatment of methods is more indirect. By currying the type in a method declaration

m : X ×
∏q

j=1 Tj → T0, we get the type X → [
∏q

j=1 Tj → T0]. Thus, we define the functor
H : C → C induced by m as follows:

HX ,
q∏

j=1

Tj → T0. (5.2.2)

Thus m will induce a H-coalgebra structure on X.
Notice that the functor H is a welldefined covariant functor, only if the method m is unary.

Binary methods, such as the method eq in the class specification Register, or app in λ-calculus
(see Chapter 4, Table 4.1), produce contravariant occurrences of X in the corresponding functor.
For example, the functor induced by eq would be HeqX , X → B. The coalgebraic approach does
not apply directly to the case of binary methods. In Section 5.3, we discuss how to overcome this
problem. Here we focus on the unary case. In this case, we can immediately associate a pair of
functors to a class specification as follows:

Definition 5.2.1 Let S be a class specification with constructor declarations ci :
∏pi

j=1 Tij → X,

i = 1, . . . , h and with method declarations mi : X ×
∏qi

j=1 Tij → Ti0, i = 1, . . . , k, where all
methods are unary. The constructor declarations in S induce the functor L : C → C defined by

L ,
h∐

i=1

Li ,

where Li : C → C is the functor determined by the constructor declaration ci defined as in (5.2.1).
The method declarations in S induce the functor H : C → C defined by

H ,
k∏

i=1

Hi ,

where Hi : C → C is the functor determined by the method declaration mi, defined as in (5.2.2).

A class implementation induces a bialgebra for the functors determined by its constructor and
method declarations, as follows:

Definition 5.2.2 A class C = 〈X, {fi : X → Ti}ni=1, {ci :
∏pi

j=1 Tij → X}hi=1, {mi : X ×∏qi

j=1 Tij → Ti0}ki=1〉 induces a bialgebra (X, β, α) (where α and β are defined below) for the
functor pair 〈L,H〉 determined by the declarations of constructors and methods as in Definition
5.2.1 above:

• the algebra map β : LX → X is defined by β , [βi]hi=1, where βi : LiX → X is the function
implementing the constructor ci, and [ ] denotes the standard case function;
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• the coalgebra map α : X → HX is defined by α , 〈αi〉ki=1, where αi : X → HiX is the
function implementing the method mi, and 〈 〉 denotes the standard pairing functor.

Thus, class implementations corresponding to a given specification can be viewed as bialgebras
as follows:

Definition 5.2.3 Let S be a class specification inducing a functor pair 〈L, H〉. A class imple-
menting S is an 〈L, H〉-bialgebra satisfying the assertions in S.

Notice that, in Definition 5.2.3 above, classes are taken up to fields, because these are private.

5.2.1 Coalgebraic Behavioural Equivalence

In this section, we characterize the behavioural equivalence on objects induced by the coalgebraic
part of a class implementation.

A preliminary step in discussing behavioural equivalences and congruences consists in extending
the behavioural equivalence on the set of objects X of a class to the whole structure of (sets
interpreting) types over X. Such extension is defined through the following definition, which
extends the notion of relational lifting of [40] to the powerset. In the definition below, by abuse of
notation, we do not distinguish between types and their usual set-theoretic interpretation.

Definition 5.2.4 (Relational Lifting) Let RX be a relation on X, let T ∈ T be such that
V ar(T ) ⊆ {X}. We define the extension RT ⊆ T × T by induction on T as follows:

• if T = K, then
RT = IdK×K ,

• if T =
∏

i∈I Ti, then
RT = {(~a,~a′) | ∀i ∈ I.aiR

Tia′i},

• if T =
∑

i∈I Ti, then
RT = {((i, a), (i, a′)) | i ∈ I ∧ aRTia′},

• if T = P(T1), then

RT = {(u, u′) | ∀a ∈ u ∃a′ ∈ u′. aRT a′ ∧ ∀a′ ∈ u′ ∃a ∈ u. aRT a′}.

In what follows, by abuse of notation, we will often denote the lifted relation RT simply by R,
when its type is clear from the context.

A strong motivation for the coalgebraic account of objects is that the quotient by the bisimilarity
equivalence of a given class, when viewed as a coalgebra, can yield, in many cases, such as that
of unary methods, a new model of the same class. For this to hold, we need at least that the
bisimilarity equivalence is a congruence w.r.t. method application, i.e.:

Definition 5.2.5 (Congruence) Let ≈X be an equivalence on the set of objects X of a class C,
and let m : X × T1 × . . .× Tq → T0 be a method in C implemented by α, then ≈X is a congruence
w.r.t. m if

x ≈X x′ ∧ a1 ≈T1 a′1 ∧ . . . ∧ aq ≈Tq a′q =⇒ α(x)(~a) ≈T0 α(x′)(~a′) ,

where ≈Ti denotes the extension of ≈X to the type Ti, according to the definition above.

Finally, having defined the coalgebraic account of a class the way we did, we have that the coal-
gebraic equivalence in the unary case equates objects with the same behaviour under application
of methods:
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Proposition 5.2.6 (Coalgebraic Bisimilarity Equivalence) Let S be a class specification and
let (X, [βi]hi=1, 〈αi〉ki=1) be an 〈L,H〉-bialgebra implementing S. Then

(i). An H-bisimulation on (X, 〈αi〉i) is a relation R ⊆ X ×X satisfying

xR x′ =⇒ ∀αi. ∀~a. αi(x)(~a) R αi(x′)(~a) .

(ii). The coalgebraic bisimilarity equivalence ≈H , i.e. the greatest H-bisimulation on (X, 〈αi〉i),
can be characterized as follows:

x ≈H x′ ⇐⇒ ∀αi. ∀~a. αi(x)(~a) ≈H αi(x′)(~a) .

In particular, the following coinduction principle holds:

R is an H-bisimulation on (X, 〈αi〉i) xR x′

x ≈H x′

Proof. By definition of coalgebraic bisimulation (see Definition 3.4.2 of Chapter 3).

Thus we have also:

Theorem 5.2.7 ≈H is the greatest congruence w.r.t. methods.

Proof. Since all methods are unary, by definition of relational lifting on constant types, we imme-
diately have that ≈H is a congruence w.r.t. methods. The fact that ≈H is the greatest congruence
follows by observing that any congruence w.r.t. methods is an H-bisimulation.

As we remarked earlier, a strong point of the coalgebraic approach to classes is that bisimilarity
equivalences naturally yield, via quotienting, classes of the same signature as the original class,
and furthermore preserve various kinds of assertions. This can be expressed also by saying that a
suitable subcoalgebra of the final coalgebra still provides an implementation of the specification,
in fact the canonical one.

It goes without saying that in dealing with bialgebras we would like to preserve the above
important feature of the purely coalgebraic approach. To this aim, we need that final bialgebras
exist, and furthermore that the behavioural equivalence is a congruence also w.r.t. constructors.
In [78, 27], general conditions on categories of bialgebras are studied in order to ensure the above
properties (see Chapter 3, Section 3.5.3).

These results can be extended/adapted also to the collection of functors modelling generalized
binary methods considered later in this chapter, at least for assertions of a simple equational shape.
In this case, if for a given bialgebra satisfying the assertions there is a “tight connection” between
the algebraic and the coalgebraic structure, then the corresponding functors admit final bialgebras
still satisfying the assertions, and the behavioural equivalence is a congruence w.r.t. constructors.
Here we do not elaborate more on this issue, but we rather focus on the coalgebraic part, which is
the most problematic one.

5.3 Coalgebraic Description of Generalized Binary Methods

In this section, we show how to extend the bialgebraic approach to binary methods. Our first
proposal (Section 5.3.1) applies when a concrete bialgebra (i.e. class implementation) is already
available. It is based on the observation that the behaviour of a binary method can be simulated
by a bunch of unary methods, each one determined by “freezing” all the occurrences of X in the
parameter types and object type, but one. The bunch being obtained after suitable manipulations
of the original method. “Freezing” an occurrence of X means that X is replaced by the carrier, i.e.
the set of states, of the given class. This allows us to define a covariant freezing functor F , where
the contravariant occurrences in the original generalized binary method are replaced by a constant
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type, namely the carrier of the given bialgebra. The freezing procedure is carried out in such a
way that, at least in the case of finitary binary methods, the bisimilarity equivalence induced by
F turns out to be the greatest congruence w.r.t. the original binary methods.

In Section 5.3.2, we present an alternative solution to the freezing functor, which we call graph
functor. Here we turn contravariant occurrences in the type of parameters of a generalized binary
method m into covariant ones simply by interpreting m as a graph instead of a function. To this
aim, we introduce a new functor G (graph functor), where the function space is substituted by the
corresponding space of graph relations.

The advantage of this latter solution with respect to the previous one is that this approach
directly applies to specifications. The drawback is that the graph bisimilarity equivalence is not
a congruence w.r.t. method application in general. One may wonder as to why this is the case.
There is as yet no general explanation. Often this means that the specification is under-determined,
or alternatively, there exist class implementations without a common refinement. However, there
are many interesting situations where the graph equivalence is a congruence w.r.t. methods. In
these cases a rich spectrum of conceptually independent coinduction principles is available. We
discuss this issue in Section 5.3.3, together with the comparison of freezing and graph bisimilarity
equivalences.

Throughout this section, let S be a class specification with constructors ci :
∏pi

j=1 Tij → X, i =
1, . . . , h, and methods mi : X ×

∏qi

j=1 Tij → Ti0, i = 1, . . . , k. Moreover, let L be the functor
induced by the constructors.

5.3.1 The Freezing Functor

Given a class implementation C, with carrier X̄, we transform C into a class C∗ containing only
unary methods. To this aim, we proceed in two steps.

First, we reduce each binary method m to a bunch of simple binary methods with the same
observable behaviour of m. To this aim, we proceed by processing parameters of complex types
as follows. For each parameter of type

∑
i∈I Ti in m, we consider methods {mi}i∈I , where the

method mi has a parameter of type Ti. Each parameter of type
∏

i∈I Ti can be viewed as the
product of |I| parameters. More subtle is the treatment of parameters of type P(T ′). If m has a
parameter of type P(T ′), i.e. m : X × . . . × P(T ′) × . . . → T0, then the behaviour of m can be
simulated by a pair of methods m1 : X × . . .→ T0, where the parameter of type P(T ′) disappears,
and m2 : X × . . . × P(T ′[X̄|X]) × T ′ × . . . → T0, where we “freeze” the powerset parameter to
a constant type and we add an extra parameter T ′. Intuitively, the method m1 accounts for the
behaviour of m when the powerset parameter is the empty set, while the method m2 accounts
for the case of non-empty sets (the precise definition of m1, m2 will be given in Definition 5.3.1
below).

By applying the above transformations to a binary method, we get a (possibly infinite) set of
simple binary methods m : X ×

∏
j∈J Tj → T0, where J is a possibly infinite set of indices (if

all sum and product types in the original method are finite, then the number of simple binary
methods together with their parameters are finite).

In the second step, we reduce each simple binary method to a bunch of unary methods. Let
m : X ×

∏
j∈J Tj → T0 be a simple binary method implemented by the function α. In order to

capture the observable behaviour of the method m, we need to consider a bunch of unary methods
ml, one for each class parameter, where ml describes the behaviour of an object when it is used
as lth class parameter.

Formally, step 1 and step 2 are defined in terms of the following method transformation:

Definition 5.3.1 (Method/Class Transformation)
(i). Let τF be the one-step method transformation function, which takes a method m : X ×∏q

j=1 Tj → T0, implemented by α, and produces a set of methods, defined by induction on types of
m as follows:

• if m is simple binary, then let I be the set of indices corresponding to the class parameters
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of type X in m, we define
τF (m) = {ml | l ∈ I}

where ml : X ×
∏q

j=1(Tj [X̄/X])→ T0 is defined by

αl(x)(a1, . . . , aq) , α(al)(a1, . . . , al−1, x, al+1, . . . , aq) .

• if m is non-simple generalized binary and its leftmost non-constant parameter different from
X is Ti, then

– if Ti =
∑qi

j=1 Tij, then τF (m) = {mij | j = 1, . . . , qi} and mij : X × . . .× Ti−1 × Tij ×
Ti+1 × . . .× Tq → T0 is defined by

αij(x)(a1, . . . , ai−1, aij , ai+1, . . . , aq) , α(x)(a1, . . . , ai−1, inj(aij), . . . , aq),

where inj : Tij →
∑qi

j=1 Tij is the canonical injection.

– if Ti =
∏qi

j=1 Tij, then τF (m) = {m′}, where m′ : X×. . .×Ti−1×Ti1×. . .×Tiqi
×. . . Tq →

T0 is defined by

α′(x)(a1, . . . , ai−1, ai1, . . . , aiqi , ai+1, . . . , aq) , α(x)(a1, . . . , ai−1,~ai, ai+1, . . . aq).

– if Ti = P(T ′
i ), then τF (m) = {m1,m2}, where m1 : X × . . .× Ti−1 × Ti+1 × . . .× Tq →

T0 is defined by α1(x)(a1, . . . , ai−1, ai+1, . . . , aq) , α(x)(a1, . . . , ai−1, φ, ai+1, . . . aq)
and m2 : X × . . . × Ti−1 × P(T ′

i [X̄|X]) ×X × Ti+1 × . . . × Tq → T0 is defined by
α2(x)(a1, . . . , ai−1, u, y, ai+1, . . . , aq) , α(x)(a1 . . . ai−1, u ∪ {y}, ai+1, . . . , aq).

(ii). Let τ∗F be the transformation function which takes a method and iteratively applies τF , defined
by

τ∗F (m) =
{

τ(m) if m is simple binary⋃
{τ∗F (mi)|mi ∈ τF (m)} otherwise

(iii). Finally, for a class C, let C∗ be the class with same carrier, fields and constructors of C,
and with unary methods

⋃
{τ∗F (m)|m is a method of C} .

Here we apply the above method transformation to a given class:

Example 5.3.2 Let R′ be a class of registers with carrier N, including the method m : X×PfX →
B defined by:

α(x)(u) =
{

true if x ∈ u
false otherwise

Then τ∗F (m) = {τ∗F (m1), τ∗F (m2)}, where

• m1 : X → B is defined by α1(x) = α(x)(φ) = false

• m2 : X × Pf (N)×X → B is defined by α2(x)(u, y) = α(x)(u ∪ {y})

• τ∗F (m1) = {m1}

• τ∗F (m2) = {m′
2,m

′′
2}, where

– m′
2 : X × Pf (N)× N→ B is defined by α′2 = α2

– m′′
2 : X × Pf (N)× N→ B is defined by α′′2(x)(u, y) = α2(y)(u, x) = α(y)(u ∪ {x}).

Now, given a class C, we can define a coalgebraic model of the transformed class C∗ using
purely covariant tools, as in Section 5.2 for unary methods.
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Definition 5.3.3 (Freezing Coalgebraic Model) Let C be a class and let C∗ be the class ob-
tained from the transformation τ∗ starting from C. We call freezing functor F the functor induced
by the methods of C∗ according to Definition 5.2.1, and freezing equivalence ≈F the bisimilarity
equivalence induced by this coalgebraic model.

Finally, we are left to establish the result which motivates our treatment, namely, for finitary
binary methods, we can prove that the freezing bisimilarity equivalence is the greatest congruence
w.r.t. methods of the original class C.

Theorem 5.3.4 Let C be a class with finitary binary methods. Then the freezing bisimilarity
equivalence ≈F is the greatest congruence on C.

Proof. The proof follows from the following facts:

1. ≈F is the greatest congruence w.r.t. methods in C∗.

2. Any equivalence on objects of C is a congruence w.r.t. the methods of C iff it is a congruence
w.r.t. the methods of C∗ .

Fact 1 above is immediate by Lemma 5.2.7. In order to prove fact 2 above, it is sufficient to show
that an equivalence ∼ on a set of objects X̄ is a congruence w.r.t. a method m : X×

∏
j∈J Tj → T0

iff it is a congruence w.r.t. the methods in τF (m). This latter fact is proved by induction on the
structure of the parameters

∏
j∈J Tj .

Base Case: m is a simple binary method implemented by α. If ∼ is a congruence w.r.t. m, then ∼
is immediately a congruence w.r.t. the methods in τF (m), by definition. Vice versa, assume that
∼ is a congruence w.r.t. the methods in τF (m). Let xa1 . . . aq, x

′a′1 . . . a′q ∈ X ×
∏q

j=1 Tj be such
that xa1 . . . aq ∼ x′a′1 . . . a′q. We prove that α(x)(~a) ∼ α(x′)(~a′) by induction on the number n
of different parameters in the lists xa1 . . . aq, x

′a′1 . . . a′q. If n = 0, then the thesis is immediate from
reflexivity of ∼. Let us assume that the thesis holds for n − 1 different parameters. Now assume
that xa1 . . . aq and x′a′1 . . . a′q have n > 0 different parameters, and let aj , a

′
j be the nth different

parameters. By induction hypothesis, α(x)(a1, . . . , aj , . . . aq) ∼ α(x′)(a′1, . . . , aj , . . . a
′
q). More-

over, α(x′)(a′1, . . . , aj , . . . a
′
q) ∼ α(x′)(a′1, . . . , a

′
j , . . . a

′
q), by the hypothesis that ∼ is a congruence

w.r.t. τF (m). Hence, by transitivity of ∼, we get the thesis.
Induction step: If the leftmost non-constant parameter in m different from X is of the shape∑

k∈K TiK
or

∏
k∈K TiK

, then the thesis is immediate from the definition of τF (m) and that of
relational lifting. If the leftmost non-constant parameter in m different from X is Ti = Pf (T ′

i ),
then τF (m) = {m1,m2}, where m1 : X × . . .×Ti−1×Ti+1× . . .×Tq → T0, m2 : X × . . .×Ti−1×
Pf (T ′

i [X̄|X])×X × Ti+1 × . . .× Tq → T0. Assume that ∼ is a congruence w.r.t. m, i.e.

x ∼ x′ ∧ a1 ∼ a′1 ∧ . . . ∧ ai−1 ∼ a′i−1 ∧ u ∼ u′ ∧ ai+1 ∼ a′i+1 ∧ . . . ∧ aq ∼ a′q =⇒

α(x)(a1, . . . , ai−1, u, ai+1, . . . , aq) ∼ α(x′)(a′1, . . . , a
′
i−1, u

′, a′i+1, . . . , a
′
q)

Then in particular ∼ is a congruence w.r.t. both m1 and m2.
Vice versa assume that ∼ is a congruence w.r.t. m1,m2, i.e.

x ∼ x′ ∧ a1 ∼ a′1 ∧ . . . ∧ ai−1 ∼ a′i−1 ∧ ai+1 ∼ a′i+1 ∧ . . . ∧ aq ∼ a′q =⇒
α(x)(a1, . . . , ai−1, ∅, ai+1, . . . , aq) ∼ α(x′)(a′1, . . . , a

′
i−1, ∅, a′i+1, . . . , a

′
q) (5.3.1)

and for all u,

x ∼ x′ ∧ a1 ∼ a′1 ∧ . . . ∧ ai−1 ∼ a′i−1 ∧ y ∼ y′ ∧ ai+1 ∼ a′i+1 ∧ . . .

∧aq ∼ a′q =⇒ α(x)(a1, . . . , ai−1, u ∪ {y}, ai+1, . . . , aq) ∼
α(x′)(a′1, . . . , a

′
i−1, u ∪ {y′}, a′i+1, . . . , a

′
q) (5.3.2)

Now let x ∼ x′ ∧ a1 ∼ a′1 ∧ . . .∧ ai−1 ∼ a′i−1 ∧ u ∼ u′ ∧ ai+1 ∼ a′i+1 ∧ . . .∧ aq ∼ a′q. We have to
show that α(x)(a1, . . . , ai−1, u, ai+1, . . . , aq) ∼ α(x′)(a′1, . . . , a

′
i−1, u

′, a′i+1, . . . , a
′
q).
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We proceed by induction on the number of elements in (u \ u′) ∪ (u′ \ u).
If u = u′ = φ then the thesis follows immediately by (5.3.1), if u = u′ 6= φ, then the thesis follows
by (5.3.2).
If |u \ u′| > 0, then let y ∈ u \ u′. Since u ∼ u′, there exists y′ ∈ u such that y ∼ y′. By (5.3.2) we
have α(x)(a1, . . . , ai−1, u, ai+1, . . . , aq) ∼ α(x′) (a′1, . . . , a

′
i−1, (u \ {y}) ∪ {y′}, a′i+1, . . . , a

′
q). Now,

by definition of relational lifting, using the fact that ∼ is an equivalence, we get (u \ {y}) ∪
{y′} ∼ u′. Then, by induction hypothesis, α(x′)(a′1, . . . , a

′
i−1, (u \ {y}) ∪ {y′}, a′i+1, . . . , a

′
q) ∼

α(x′)(a′1, . . . , a
′
i−1, u

′, a′i+1, . . . , a′q). Then the thesis follows by transitivity of ∼.

As a by-product of Theorem 5.3.4 above, we get that for finitary binary methods the greatest
congruence w.r.t. methods always exists, i.e.

Corollary 5.3.5 Let C be a class with carrier X and whose methods are all finitary binary. Then
∪{∼⊆ X ×X| ∼ is a congruence w.r.t. the methods of C} is a congruence.

Notice that, in order to ensure Theorem 5.3.4 above, it is essential to give a coalgebraic descrip-
tion of binary methods which accounts for the behaviour of an object under method application
when the object is viewed as any of the class parameters of the method. Otherwise, if we observe
the behaviour of an object e.g. only when it is considered as the target of a method call and not
as a generic class parameter, the congruence property of ≈F fails, in general. The following is a
counterexample.

Example 5.3.6 Let us consider a class R′ of registers containing just a method m : X ×X → N,
defined by α(r1)(r2) = r2.val.

Now, if in the definition of the freezing functor F we consider only the first component induced
by the method m, we have r1 ≈F r2, for all r1, r2. But then ≈F is not a congruence w.r.t. the
method m. E.g., if we consider r1, r2 such that r1.val = 1 and r2.val = 2, then r1 ≈F r2, however,
for any r0, α(r0)(r1) = 1, while α(r0)(r2) = 2. The problem arises since the result of applying m
depends on an unobservable behaviour of the second parameter.

Nevertheless, there are many interesting cases in which it is sufficient to consider only some
components in the definition of F for the bisimilarity equivalence to be a congruence. An interesting
example is that of the λ-calculus, [41]. In this case, the freezing functor with only first component
for the method app induces the applicative equivalence on closed λ-terms. While, if we consider
both components in the functor (or only the second one), we get an equivalence which can be
viewed as a coinductive characterization of the contextual equivalence. Applicative and contextual
equivalences can be proved to coincide. This is not immediate and many techniques, which apply
to various reduction strategies, have been developed to achieve this aim, e.g. see [41] for more
details.

Infinitary Binary Methods.

Theorem 5.3.4 above does not extend to infinitary binary methods, since the freezing bisimulation
equivalence fails, in general, to be a congruence. The following are two counterexamples.

Example 5.3.7 Let C be a class with carrier X , N and with just one method m : X×P(X)→ B
defined by:

α(x)µ(U) =
{

true if |µ(U)| < ω
false otherwise

One can check that the equivalence ∼k= {(n, m)|n, m ≤ k} ∪ {(n, n)|n > k} is a congruence
for all k. However,

⋃
k∈ω ∼k= {(n, m)|n, m ∈ N}, which coincides with the freezing equivalence,

is not a congruence.

The following example amounts to Example 3.5.10 of [77], page 114.
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Example 5.3.8 Let C be a class with carrier X , N and with just one method m : X × [N →
X]→ B (where [N→ X] is an alias for the infinite product type

∏
i∈N Xi), defined by:

α(x)(f) =
{

true if f is bounded
false otherwise

where f : N→ N is bounded if there exists k ∈ N such that ∀n.f(n) ≤ k.
One can check that the equivalence ∼k= {(n, m)|n, m ≤ k} ∪ {(n, n)|n > k} is a congruence

for all k. However,
⋃

k∈ω ∼k= {(n, m)|n, m ∈ N} coincides with the freezing equivalence and is
not a congruence.

Clearly, in all cases where the union of all congruences is not a congruence itself, the freezing
equivalence cannot be a congruence, since any congruence is in particular a freezing bisimulation.
This is not surprising, since in these cases we lack a canonical congruence, thus any semantics
would be problematic. A natural question which arises is whether also the other implication holds,
i.e. if the union all congruences is a congruence, then the freezing equivalence is a congruence.
Somehow surprisingly, this is not the case, the following being a counterexample:

Example 5.3.9 Let C be a class with carrier X , N and with just one method m : X × [N →
X]→ B defined by:

α(x)(f) =
{

true if f is definitely constantly 0
false otherwise

where f : N→ N is definitely constantly 0 if there exists k such that f(n) = 0 for all n ≥ k.
One can easily check that the greatest congruence on X is {(0, 0)} ∪ {(n, m)| n, m 6= 0}.

However, the freezing equivalence is {(n, m)|n, m ∈ N}, which is clearly not a congruence.

Nevertheless, there are many situations where the greatest congruence exists and the freezing
equivalence captures it. We feel that a situation where the greatest congruence does not exist or it
exists but the freezing equivalence does not capture it, is a situation where the class specification
is underspecified. But more work needs to be done in order to capture this.

Finally, notice that the problems with infinitary methods arise because of infinite products and
P( ). Infinite sums are not problematic. Namely, Theorem 5.3.4 above holds also for the extension
of finitary types with infinite sums.

5.3.2 The Graph Functor

In this section, we introduce an alternate approach to dealing with binary methods, which is
satisfactory in most cases, and when it does not, it is a telltale that the specification is probably
under determined.

Contravariant occurrences of the type variable in a generalized binary method can be turned into
covariant ones by interpreting methods as graphs instead of functions. Consequently, the function
space appearing in the functor induced by m is turned into a set of relations. For example, for
the binary method eq : X × X → B of the class R of registers, we would consider the functor
GX , P(X × B).

Similarly to the case of freezing, in order to make the graph bisimilarity equivalence a con-
gruence in a wider spectrum of cases (including Example 5.3.6), we need to consider multiple
copies of the binary method in the definition of the graph functor, in order to account for the be-
haviour of each class parameter. Thus, the graph functor corresponding to the method eq becomes
GX , P(X × B) × P(X × B). This works straightforwardly for simple binary methods, but it
requires a preliminary transformation for methods with more complex class parameters. This es-
sentially corresponds to the method transformation procedure for the freezing functor, apart from
the part which actually freezes the parameters. For dealing with the powerset type constructor,
we introduce the new symbol P

√
, which is used to denote a powerset type constructor which has

been already processed.
Formally, we define:
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Definition 5.3.10 (Normal Form) A binary method m : X ×
∏

j∈J Tj → T0 is in normal form
if its parameter types are either constants or X or P

√
(T ), for T ∈ T .

Definition 5.3.11 (Graph Method/Class Transformation)
(i). Let τG be the one-step method transformation function, which takes a generalized binary method
m : X ×

∏q
j=1 Tj → T implemented by α and produces a set of methods, defined by:

• if m is in normal form, then let I be the set of indices corresponding to class parameters of
type X including the object itself, we define

τF (m) = {ml | l ∈ I}

where ml : X ×
∏

j∈J Tj → T0 is defined by

αl(x)(a1, . . . , aq) , α(al)(a1, . . . , al−1, x, al+1, . . . , aq) .

• if m is not in normal form, let Ti be the leftmost parameter not in normal form, then

– if Ti =
∑qi

j=1 Tij, then τG(m) = {mij | j = 1, . . . , qi} where mij : X × . . .×Ti−1×Tij ×
Ti+1 × . . . → T0 is defined by αij(x)(a1, . . . , ai−1, aij , ai+1, . . . , aq) , α(x)(a1, . . . ai−1,
inj(aij), . . . aq).

– if Ti =
∏qi

j=1 Tij, then τG(m) = {m′}, where m′ : X×. . .×Ti1×. . .×Tiqi×. . .→ T0 is de-
fined by α′(x)(a1, . . . , ai−1, ai1, . . . , aiqi

, ai+1, . . . , aq) , α(x)(a1, . . . , ai−1,~ai, ai+1, . . . aq).

– if Ti = P(T ′
i ), then τG(m) = {m1,m2}, where m1 : X × . . .× Ti−1 × Ti+1 ×× . . .→ T0,

α1(x)(a1, . . . , ai−1, ai+1, . . . , aq) , α(x)(a1, . . . , ai−1, φ, ai+1, . . . aq) and m2 : . . . ×
P
√

(T ′
i )×X×. . .→ T0 is defined by α2(x)(a1, . . . , ai−1, u, y, ai+1, . . . , aq) , α(x)(a1, . . . ai−1, u∪

{y}, ai+1, . . . aq).

(ii). Let τ∗G be the transformation function which takes a generalized binary method and produces
a set of methods in normal form, defined by

τ∗G(m) =
{

τG(m) if m is in normal form⋃
{τ∗G(mi)|mi ∈ τG(m)} otherwise.

(iii). Let S be a class specification, we denote by S∗ the class specification obtained by applying
the transformation τ∗G to all method declarations in S.
iv) Let C be a class implementation, we denote by C∗ the class implementation obtained by applying
the transformation τ∗G to all methods in C.

Notice that there is a precise correspondence between the transformations τ∗G and τ∗F . Namely,
for any method m, there is a one-to-one correspondence between the methods of τ∗G(m) and τ∗F (m),
mapping each method of τ∗G(m) into a method of τ∗F (m), which differs from the first one only
because of the freezing of some parameter types.

In order to give a graph coalgebraic model to a specification S (implementation C), we consider
the corresponding transformed specification S∗ (implementation C∗), and we define a correspond-
ing graph functor G, simply by turning the contravariant function spaces in method declarations
into covariant spaces of graphs:

Definition 5.3.12 (Graph Functor) Let S be a class specification. The method declarations in
S∗ induce the graph functor G : C → C defined by

G ,
k∏

i=1

Gi ,

where, for each method mi : X ×
∏

j∈J Tij → Ti0, GiX , P((
∏

j∈J Tij)× Ti0).
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Given a class C, the corresponding class C∗ immediately induces a coalgebra for the graph
functor determined by the method declarations in C∗, according to Definition 5.2.2 of Section
5.2, by viewing method codes as graphs instead of functions. However, there is not a precise
correspondence between classes and coalgebras anymore, since not all G-coalgebras correspond to
a class, but only the functional ones, i.e. those whose coalgebra map is a function.

The graph bisimilarity equivalence on the objects of C∗ can be characterized as follows:

Proposition 5.3.13 (Graph Bisimilarity Equivalence) Let C be a class, let G =
∏k

i=1 Gi

be the functor induced by the method declarations in C∗, and let (X, 〈αi〉ki=1) be the G-coalgebra
induced by the methods of C∗. Then

(i). A G-bisimulation (graph bisimulation) on (X, 〈αi〉ki=1) is a relation R ⊆ X ×X satisfying

xR x′ =⇒ ∀αi.∀~a∃~a′. (~aR~a′ ∧ αi(x)(~a)R αi(x′)(~a′)) ∧

∀~a′ ∃~a.(~aR ~a′ ∧ αi(x)(~a) R αi(x′)(~a′)) .

(ii). The graph bisimilarity equivalence ≈G, i.e. the greatest G-bisimulation on (X, 〈αi〉ki=1), can
be characterized as follows:

x ≈G x′ ⇐⇒ ∀αi. ∀~a ∃~a′.(~a ≈G ~a′ ∧ αi(x)(~a) ≈G αi(x′)(~a′)) ∧

∀~a′ ∃~a.(~a ≈G
~a′ ∧ αi(x)(~a) ≈G αi(x′)(~a′)) .

In particular, the following coinduction principle holds:

R is a graph bisimulation xR x′

x ≈G x′

Proof. By definition of coalgebraic bisimulation (see Definition 3.4.2 of Chapter 3).

Notice the alternation of quantifiers ∀∃ in the definition of graph bisimulation, due to the
presence of the powerset in the graph functor.

The functor G has a final coalgebra, see e.g. [17]. But, in general, it is not functional, and
moreover the functionality property of a coalgebra is not preserved by the unique morphism into
the final coalgebra. Therefore, the image of a class implementation under the final morphism is not
guaranteed to be a class implementation. Thus we lack minimal class implementations, in general.
In Section 5.3.3, we study conditions for the final morphism to preserve the functionality property,
thus recovering minimal implementations.

5.3.3 Comparing Graph and Freezing Bisimilarity Equivalences

The following is an easy lemma:

Lemma 5.3.14 ≈F⊆≈G .

Proof. One can easily check that ≈F is a graph bisimulation, using reflexivity of ≈F .

The converse inclusion does not hold in general. For example, this is the case for the class R′

obtained from the class R of registers of Table 4.1 when we drop methods get and set, and we
consider only method eq. Namely, for R′, ≈G equates all pairs of registers, while ≈F is the identity
relation on registers. Moreover, notice that in this case ≈G is not a congruence w.r.t. eq.

The following result is a fundamental tool for recovering ≈F = ≈G:

Theorem 5.3.15 Let C be a class with finitary generalized binary methods. Then

≈G = ≈F ⇐⇒ ≈G is a congruence w.r.t. the methods in the class.
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Proof. (⇒) By Theorem 5.3.4.
(⇐) By Lemma 5.3.14, ≈F⊆≈G. Since ≈G is a congruence, by Theorem 5.3.4, ≈G⊆≈F . Thus
≈G=≈F .

The equality ≈G = ≈F on a given class C is equivalent to the fact that the image of the
G-coalgebra representing C into the final coalgebra is still a functional coalgebra. Hence, we have:

Corollary 5.3.16 Let C be a class with finitary generalized binary methods. Then the image of
the G-coalgebra representing C into the final coalgebra is a functional coalgebra if and only if ≈G

is a congruence.

Thus Corollary 5.3.16 above gives an answer to the problem of minimal class implementations
for the graph functor, raised at the end of Section 5.3.2.

Theorem 5.3.15 above is all that we might want. However, in practice, it is useful to have also
alternative sufficient conditions. The following theorem gives a sufficient condition on the freezing
equivalence, ensuring that ≈G = ≈F :

Theorem 5.3.17 If ≈F is determined only by the unary methods of the class, i.e.

x ≈F x′ ⇐⇒ ∀m unary implemented by α. ∀~a. α(x)(~a) ≈F α(x′)(~a′) ,

then ≈G = ≈F .

Proof. By Lemma 5.3.14, ≈F⊆≈G. Vice versa, we have

≈F = (≈F )|unary methods = (≈G)|unary methods ⊇≈G .

Theorem 5.3.17 above applies to the class R of registers, since the freezing equivalence is already
determined solely by the unary methods get and set.

Remark 5.3.18 Notice that Theorem 5.3.17 does not apply to the class Λ, where nevertheless
≈G = ≈F . Proving this latter result for the λ-calculus is quite a difficult task. This problem has
been addressed in the more general setting of applicative structures in [42].

An almost trivial, but useful application of Theorem 5.3.17 is the following:

Corollary 5.3.19 If the freezing equivalence restricted to the unary methods of the class is the
identity on objects, then ≈G = ≈F .

5.4 Remarks and Directions for Future Work

We end this chapter with some comments and some potentially fruitful lines of research about
coalgebraic semantics of binary methods.

• Without the powerset, our (finitary) generalized binary methods are a subset of the ones
handled by Tews using extended polynomial (cartesian) functors. However, we feel that the
two collections of methods essentially correspond. Namely, given a method m which has
an extended polynomial type, either m corresponds directly (possibly up-to currying) to a
generalized binary method, or m can be cast into a generalized binary type at the price of
extending it vacuously. For example, a method m : X → ((X → (N → X)) + N) has an
extended polynomial type in the sense of Tews, but not a generalized binary type (since the
occurrence of + prevents currying). But, the effects of m can be recovered in our setting,
since m can be cast into a method of type X ×X → ((N → X) + N). Of course, this is just
an example, and further investigation is needed to streamline this procedure.
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• Contravariant domain equations appropriate for expressing directly binary methods can be
solved both in the category of CPO’s and metric spaces [10, 70]. The problem arises then as
to which equivalence is induced by these semantics. In the coalgebraic approaches, that we
discuss in the thesis, the equivalence is always the greatest congruence.

– In the CPO the metric cases, one needs to prove that the semantics is fully abstract, in
order to establish this.

– It would be very interesting to investigate this problem and possibly prove a general
full abstraction result. Such a result would shed light on the mathematical structure of
CPO’s (or metric spaces).

Furthermore, it would provide a new induction, or a new coinduction principle.

• The existence of final (minimal) models for a given specification is important. To this aim,
as discussed at the end of Section 5.2, it is crucial that the bisimilarity equivalence is a
congruence and moreover it preserves assertions. It would be quite interesting to investigate
for which kinds of assertions this is the case.

• Following [47], one can also define an equivalence between coalgebras implementing the same
specification, by taking coalgebras to be equivalent when initial objects are bisimilar.

• The grammar for parameter types in Definition 5.1.1 could be extended to include inductive
and coinductive types. However, apparently, it cannot be extended with the (contravariant)
arrow type. Namely, there is no “well-behaved” natural extension of the behavioural equiva-
lence to the function type, since the natural definition RT1→T2 = {(f, f ′) | ∀xRT1x′. fxRT2f ′x′}
of relational lifting fails to preserve equivalence relations, because RT1→T2 is not reflexive,
in general. A possible remedy to this problem is that of including T → T in the covariant
space of binary relations. The difference w.r.t. the traditional interpretation of the function
space arises when we define bisimulation equivalences.

• Finally, we point out that our approach to the bialgebraic description of classes involving
binary methods is quite general. It can be used to model coinductive data types, possibly
with binary evolution laws, such as the concurrent process language with process parameters
studied in [51].
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6
Towards Co(bi)algebraic Descriptions

of Object-Oriented Languages with
Store

In this chapter, we investigate the possibility of extending the coalgebraic approach discussed in
Chapter 5 to imperative Object-Oriented languages. We focus on a fragment of the imperative
typed class-based language Fickle [29, 30], introduced in Chapter 2.

In dealing with Fickle, the approach investigated in Chapter 5 needs to be refined to accom-
modate imperative features as well as general programs, i.e. sequences of classes possibly related
by inheritance, mutual definitions, etc. Special care needs to be devoted to representing the store,
and in defining the evolution of objects, we have to take into account all possible pointers involving
them.

In this chapter, we deal directly only with unary methods, and we point out at the extra
problematic issues which arise in the imperative setting, when we try to model also binary methods,
in the line of Chapter 5.

Moreover, in this chapter, we investigate the possibility of utilizing the coalgebraic computa-
tional model also for program equivalence and program transformation. This is a somewhat dual
goal w.r.t. the program refinement of Reichel and Jacobs.

Interestingly, the coalgebraic equivalence on Fickle objects induces a behavioural equivalence
on Fickle expressions (i.e. bodies of main methods), which can be used to study notions of
observational equivalences. In particular, in this chapter we use the coalgebraic equivalence to study
the contextual equivalence ≈P (indexed by a program P ), introduced in Chapter 2, Definition 2.3.1.

6.1 Coalgebraic Description of Fickle Objects and Programs

In this section, we give a coalgebraic account of Fickle objects (and programs) for the fragment
of Fickle consisting of unary methods. Following the approach in Chapter 5, we model classes as
coalgebras, where the carrier represents the objects of the classes, and the coalgebra structure is
determined by the operational semantics of the methods. The coalgebra structure captures the
evolution of the objects under the action of methods. In order to model the evolution of objects
in an imperative setting, we need to account also for sharing of addresses in the store and aliasing
of variables.

We start by defining our representation of imperative objects of a class c.

Definition 6.1.1 Let refobjectc be the set of pairs (ι, O), where ι ∈ addr, and O ∈ (addr →pfin

object) is the least closed function, — i.e. ∀o ∈ range(O). ∀ι ∈ range(o). ι ∈ dom(O) —, such that
ι ∈ dom(O) and O(ι) ∈ objectc.

Essentially, a refobject can be viewed as a minimal store induced by an address, when we do
not consider the environment part.

In what follows, we simply denote by O an element (ι, O) of
⋃

c refobjectc.
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Before introducing our coalgebraic semantics, we need to define the notion of consistency be-
tween refobjects and stores, the notion of store update with a refobject, and the notion of refobject
induced by an address in a store:

Definition 6.1.2 Let σ ∈ store, O ∈ refobjectc, ι ∈ addr.
i) O and σ are consistent, written con(O, σ), if for all addresses ι ∈ dom(O), if ι ∈ dom(σ), then
O(ι) = σ(ι).
ii) For O and σ consistent, and x ∈ id, we define σ[O/x] the store σ in which the object corre-
sponding to the refobject O has been associated to x, and the rest of the store, if necessary, has
been updated according to O.
iii) Let ι ∈ dom(σ). We denote by σ(ι) the unique refobject (ι, O) included in σ. Let x ∈
varid ∪ {this}. We denote by σ(x), σ(x) itself, if x has base type, the unique refobject (σ(x), O)
included in σ, otherwise.

Now we introduce the coalgebraic description of the fragment of Fickle consisting of unary
methods. To this aim, we endow the set of refobjects of a given program P with a coalgebra
structure for the functor induced by the methods in P . A method t0 m(t1x1, . . . , tqxq) in P , when
called on an object together with a list of actual parameters, can either terminate (successfully or
with an exception/error) producing a possibly modified object, or not terminate. The behaviour
of methods on objects determines the coalgebraic structure:

Definition 6.1.3 Let P , c1, . . . , cn, where ci , {fi1; . . . fihi ;mi1; . . . ;miki}.
i) Let H : Set → Set be defined by

H ,
∐

i

∏
j

Hij ,

where Hij : Set → Set is determined by the method declaration

t0 mij (t1x1, . . . , tqxq) {c′1, . . . , c′p}

of the class ci as follows:

HijX , [[t1]]× . . .× [[tq]]→ (([[t0]] + dev)×X + 1) ,

where, for all i = 0, . . . , q,

[[ti]] =


bool if ti = bool
int if ti = int
addr otherwise .

The definition of Hij on arrows is canonical.
ii) Let us denote

∐
ci

refobjectci
simply by refobjectP . Let αP : refobjectP → H(refobjectP ) be

defined by
αP , [〈αij〉j ]i ,

where αij : refobjectci
→ Hij(

∐
c′k∈Cij

refobjectc′k
), for Cij the set of classes to which the method

mij can reclassify the object, is defined by:

αij(O) , ~a 7→


(u, σ1(this)) if e is the body of mij and

(e, ∅[O/this,~a/~x])−→P (u, σ1)
∗ otherwise,

where ∗ denotes the only element of 1. Notice that the store ∅[O/this,~a/~x] is always defined (i.e.
there are no consistency problems), since all actual parameters are of base type.
iii) Let [[ ]]HP : (refobjectP , αP ) → (ΩG, αΩH

) be the coalgebraic semantics, i.e. the unique H-
coalgebra morphism into the final H-coalgebra.
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By applying the general theory of coalgebraic semantics (see Chapter 3), we get the following
coinductive characterization of the equivalence induced by [[ ]]HP :

Proposition 6.1.4 The coalgebraic semantics [[ ]]HP induces the following behavioural equivalence
on objects of P : for all O,O′ ∈ refobjectc, where c is a class of P ,

O∼H
P O′ ⇐⇒

∀ method m(~x) in c with body e, ∀ list of arguments ~a for ~x,
(e, ∅[O/this,~a/~x]) −→P (u, σ1)
⇒ (e, ∅[O′/this,~a/~x]) −→P (u, σ′1) ∧ σ1(this)∼H

P σ′1(this), and conversely.

Corollary 6.1.5 ∼H
P is the greatest fixed point of the following monotone (w.r.t. subset inclusion)

operator on relations on refobjects:

Φ(R) , {(O,O′) | ∀m(~x) : e in c, ∀ list of arguments ~a for ~x,
(e, ∅[O/this,~a/~x]) −→P (u, σ1)
⇒ (e, ∅[O′/this,~a/~x]) −→P (u, σ′1) ∧ σ1(this) R σ′1(this), and conversely }.
In other words, the following coinduction principle for establishing ∼H

P is sound and complete:

ORO′ ∧ R is a Φ-bisimulation
O ∼H

P O′ ,

where a Φ-bisimulation R is a relation s.t. R ⊆ Φ(R).

Example 6.1.6 Let Register be a class with just one field containing the integer value of a register,
and two methods, getval and setval. The first method returns the contents of the register, the latter
sets the contents to a new value passed as parameter, and returns the new value. One can easily
check that the coalgebraic equivalence on objects class Register equates two registers if and only
if they have the same contents.

Example 6.1.7 Let IntList be a class representing possibly circular lists of integers. The class
IntList has two fields, representing the head and the tail of a list, i.e. containing an integer value
and a list, respectively, and two methods, returning the head and the tail of a list. Then the
coalgebraic equivalence on IntList equates two lists if and only if they have the same value in the
head and the same address in the tail.

Example 6.1.8 In order to recover the extensional equivalence on lists, one can define the class
IntList by considering just one method, taking an integer n as parameter and returning the value
of the n-th element of a list.

The coalgebraic equivalence ∼H
P equates objects which behave in the same way under method

application, for all lists of parameters, in the minimal store. Actually, store minimality is not
relevant. Namely, one can easily show that the behaviour of an object only depends on method
parameters, and not on the rest of the store, if we assume that the expression new c does not
appear in the bodies of class methods. However, we conjecture that the above assumption can be
eliminated. Anyway, we feel that this is not a strong assumption, since usually class methods are
used to access or modify objects, while creation of new objects is performed in the main method.

Moreover, in what follows, we tacitly assume also that, if two objects of a root class d are
∼H

P -equivalent, then their canonical extensions (via re-classification) to objects of a state subclass
c are still ∼H

P -equivalent. This means that in the subclass c there are no extra methods which
discriminate solely on the basis of the fields in the superclass d. This is quite a natural hypothesis,
which is necessary to deal with re-classification.

Thus we have:
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Lemma 6.1.9
O∼H

P O′ ⇐⇒

∀ method m(~x) in c with body e, ∀σ. con(O, σ) ∧ con(O′, σ),
(e, σ[O/this]) −→P (u, σ1)
⇒ (e, σ[O′/this]) −→P (u, σ′1) ∧ σ1(this)∼H

P σ′1(this), and conversely.

The equivalence ∼H
P on refobjects naturally induces an equivalence on stores, if we take stores

to be equivalent on all variables:

Definition 6.1.10 We define

σ ∼H
P σ′

∆⇐⇒ ∀x ∈ id . σ(x) ∼H
P σ′(x) .

Another immediate consequence of the fact that object behaviour only depends on method
parameters, is that, if two objects are ∼H

P -equivalent, then they behave in the same way under
application of methods on ∼H

P -equivalent parameters:

Lemma 6.1.11
O∼H

P O′ ⇐⇒

∀ m(~x) : e in c, ∀σ, σ′. σ ∼H
P σ′ ∧ con(O, σ) ∧ con(O′, σ′), (e, σ[O/this]) −→P (u, σ1) ⇒

(e, σ′[O′/this]) −→P (u, σ′1) ∧ σ1(this)∼H
P σ′1(this), and conversely.

6.1.1 Binary Methods

The freezing and graph approach introduced in Chapter 5 for modelling binary methods are not
directly extensible to an imperative setting. Namely, in the present imperative setting, binary
methods give rise to the extra issue of possible inconsistencies between the object O and the other
object parameters, even in the empty store. In particular, if we consider the natural extension of
the coalgebraic semantics of unary methods to binary methods, we get an object equivalence which
discriminates on the basis of addresses, both in the case of the freezing functor F and in the case
of the graph functor G. Namely, let us focus on freezing, and let us consider the class Register of
Example 6.1.6, extended with the binary method add, which adds the contents of two registers.
Then the method add tells apart registers with different addresses but equal contents, when we
apply it to a register parameter consistent with e.g. the first register but not with the second
one. To overcome this problem, one could modify the notion of object equivalence, by testing the
behaviour of objects under method application only on parameters consistent with both objects.
However, somewhat surprisingly, this is not a transitive relation, in general. A possible solution
to the transitivity problem above consists again in compensating the observability deficit of unary
methods. However, this deserves further study, and we leave it as an open problem how to give a
coalgebraic description of Fickle objects in the general case.

6.2 Coalgebraic and Observational Equivalences on Programs

In this section, we introduce a notion of equivalence on expressions w.r.t. a program P ,
�
≈P , which

is induced by the coalgebraic equivalence on objects ∼H
P of Section 6.1, and we briefly discuss the

relationships between
�
≈P and the contextual equivalence ≈P introduced in Chapter 2, Section 2.3.

From now on we denote the equivalence ∼H
P simply by ∼P . The coalgebraic equivalence on

objects introduced in the previous section naturally induces a notion of equivalence on expressions
representing bodies of main methods w.r.t. a given program P . Two main methods are equivalent
w.r.t. P when, for any store, they produce equivalent values and equivalent stores:
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Definition 6.2.1 Let
�
≈P⊆ expr × expr be defined by:

e
�
≈P e′ ⇐⇒

∀σ. ((e, σ)→P (u, σ1) =⇒ (e′, σ)→P (u′, σ′1) ∧ u ∼P u′ ∧ σ1 ∼P σ′1),
and conversely,
where u is u, if u ∈ sVal ∪ dev, and it is σ1(u), if u ∈ addr.

We conjecture that
�
≈P is adequate w.r.t. the contextual equivalence ≈P , i.e:

Conjecture 6.2.2 (Adequacy of
�
≈P ):

�
≈P⊆≈P .

Completeness of
�
≈P trivially fails, because in the contextual equivalence there is no way of

observing different addresses generated by new expressions. For instance, if the class c in the
program P is s.t. only objects with the same address are ∼P -equivalent, then the expressions
e , x := new c and e′ , x := new c;x := new c are not �∼P -equivalent. However, there is no
context separating them, since in the observational equivalence ≈P we only observe values of base
types. Nevertheless, we can still get a completeness result for the restricted set of expressions not
containing new expressions, under the assumption that in each class of the program there is an
observable and modifiable field of base type:

Theorem 6.2.3 (Completeness of ≈P ): Let P be a program, and let e, e′ be main methods for P .
If e, e′ do not contain new expressions, and in each class c of P there is a field f of base type, a
method m1, which returns the value of f , and a method m2, which sets the field f to a value given
as parameter, then e ≈P e′ =⇒ e

�
≈P e′ .

Proof. Assume by contradiction e ≈P e′, but e 6
�
≈P e′. The difficult case is when e 6

�
≈P e′ because

∃σ. (e, σ) →P (ι, σ1) ∧ (e′, σ) →P (ι′, σ′1), but ι 6∼P ι′ (if returned values are equivalent, but
∃x. σ1(x) 6∼P σ′1(x), then we proceed as in the previous case by considering C[ ] , [ ];x). Let us
assume that the objects to which ι, ι′ point in the stores σ1, σ

′
1 are of class c. If σ1(ι).f 6= σ′1(ι

′).f ,
then the context C[ ] , [ ].m2(. . .) tells apart e and e′, getting a contradiction. Otherwise, if
σ1(ι).f = σ′1(ι

′).f , then let z be fresh, and let us consider the store σ[ι/z]. Then the context
C[ ] , z.m2(. . . a . . .); ([ ].m1(. . .) = z.m1(. . .)), where a is a new value for the field f , tells apart e
and e′ in the store σ[ι/z].

Notice that the assumption of no occurrence of new expressions in e, e′ is fundamental in the
proof above, since the technique of extending the store with a fresh variable would not work in the
case the addresses ι, ι′ are generated by new expressions.

6.3 Remarks and Directions for Future Work

In this chapter, we have extended the coalgebraic framework of [64, 47] to the imperative case.
Moreover, we have defined a coalgebraic behavioural equivalence, which we conjecture to be ad-
equate w.r.t. the contextual equivalence, and which is complete under suitable restrictions on
syntax.

The two main problems which remain open are:

• to accommodate coalgebraically binary methods in the imperative setting;

• to prove the adequacy result of the coalgebraic behavioural equivalence w.r.t. the contextual
equivalence.



74 6. Towards Co(bi)algebraic Descriptions of Object-Oriented Languages with Store



7
Typing Binary Methods

In this chapter, we discuss the well-known problem of typing binary methods when subclasses are
considered as subtypes. In Section 7.1, we recall the problem, in Section 7.2, we discuss some
solutions which have been proposed in the literature. Finally, in Section 7.3, we present a new
solution, which is based on a new typing system, where one can annotate in the type of an object
whether a method is never called on that object. In the conclusion we will briefly comment on the
motivations for introducing this new system.

7.1 The Problem of Typing Binary Methods

Typing binary methods is problematic when subclasses are considered as subtypes, i.e. an object
of a subclass can be passed to a method expecting an object of a superclass. This problem has
been extensively studied in the literature, see e.g. [15]. Here we briefly illustrate it.

The problem arises when overloading of binary methods in subclasses is admitted. Figure 7.1
shows the declaration of a class of points in a plane, a standard example of a class with a binary
method. In the class Point, the method get-x returns the x-position of the point in the plane, the
method get-y returns the y-position; the method eq is binary. It takes two points as arguments to
test for the equality and returns true, if they are considered as equal.

Figure 7.2 defines a subclass ColorPoint of class Point. The method get-s returns the color of
the point. The implementation of the method eq allowing two ColorPoint objects to be compared
(taking the color into account), overrides the behaviour of eq of Point. In this chapter, we consider
this as running example. The instances of Point and ColorPoint have the following object types:

Point ≡ OT 〈〈 get-x : int ; get-y : int ; eq : Point→ bool〉〉

ColorPoint ≡ OT 〈〈 get-x : int ; get-y : int ; get-s : string ;
eq : ColorPoint→ bool〉〉

class Point
attributes
xValue : int
yValue : int

methods
pt.get-x = pt.xValue
pt.get-y = pt.yValue
pt1.eq(pt2 : Point) =

if (pt1.get-x = pt2.get-x & pt1.get-y = pt2.get-y)
then true
else false

end class

Figure 7.1: The class Point
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class ColorPoint extends Point
attributes
sValue : int

methods
cpt.get-s = cpt.sValue
cpt1.eq(cpt2 : ColorPoint) =

if (cpt1.get-x = cpt2.get-x & cpt1.get-y = cpt2.get-y &
cpt1.get-s = cpt2.get-s)

then true
else false

end class

Figure 7.2: The class ColorPoint

class d
attributes
. . .

methods
. . .
pt.breakit( ) =

nupt : Point
nupt = new Point(1,2)
if (pt.eq(nupt))

then true
else false

end class

Figure 7.3: The Method breakit

Informally, a type σ is a subtype of τ , written σ ≤ τ , if an expression of type σ can be used in
any context that expects an expression of type τ . In object-oriented programming, an object type
σ is a subtype of the type τ if σ has more methods than τ , as any context that expects the object
of type τ will not directly use the extra methods of σ and thus no type errors will occur. In fact it
is also possible to replace the type of any method by a subtype and still have the resulting object
types in the subtype relation. Thus, the general rule is

OT 〈〈m1 : S1, . . . ,mn : Sm, . . . ,mn+k : Sm+k〉〉 ≤ OT 〈〈m1 : T1, . . . ,mn : Tm〉〉

(with k ≥ 0) iff for each i ∈ {1..n}, Si ≤ Ti.
In object-oriented languages, if subclasses corresponds to subtypes, an object of the subclass

ColorPoint can be used where an object of the superclass Point is expected. But not always
subclasses generate subtypes. Namely, methods are typed using the contravariant arrow type. The
contravariant rule [?] for the arrow type states that σ → τ ≤ σ′ → τ ′ iff σ′ ≤ σ and τ ≤ τ ′. Now,
let us consider method eq in ColorPoint. Its type would be a subtype of the type of eq in Point, if
ColorPoint→ bool is a subtype of Point→ bool. By the contravariant rule this requires Point to
be subtype of ColorPoint, which is untrue, because of the contravariance arrow type of subtyping
relation. On the other hand, it would be unsafe to have ColorPoint ≤ Point. Namely, consider
the method breakit of Figure 7.3; when we call this method with colored point cp, then it calls the
method eq of ColorPoint. This code tries to access the color field of nupt which does not exist.

7.2 Existing Solutions

In the literature,[20, 18, 15], there are various possible solutions to the problem of typing binary
methods. In this section, following Kim Bruce et al. [15], we present various solutions for typing
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class PointPair
attributes
p1 : Point
p2 : Point

methods
p1.eq(p2 : Point) = if (p1.get-x=p2.get-x & p1.get-y=p2.get-y)

then true
else false

end class

class ColorPointPair
attributes
p1 : ColorPoint
p2 : ColorPoint

methods
p1.eq(p2 : ColorPoint) =
if (p1.get-x=p2.get-x & p1.get-y=p2.get-y & p1.get-s=p2.get-s)
then true
else false

end class

Figure 7.4: The PointPair and ColorPointPair classes

binary methods.
The simplest way to solve this problem is to avoid binary methods. Depending on the object

oriented language used, which provides, say, also conventional procedural abstraction, such as
C++, Object Pascal, one can use functions instead of binary methods. As usual, these functions
can be defined outside of classes and can be applied to pair of arguments. In our example, the
binary method eq can be defined outside the classes Point and ColorPoint, which do not contain
method eq anymore.

function eqPt(pt1, pt2: Point): bool
return(pt1.get-x=pt2.get-x & pt1.get-y=pt2.get-y);

function eqCPt(cpt1, cpt2: ColorPoint): bool
return(cpt1.get-x=cpt2.get-x & cpt1.get-y=cpt2.get-y

& cpt1.get-s=cpt2.get-s);

The problem of using functions instead methods is the loss of dynamic dispatch and causes
unnecessary code duplication.

In pure object oriented languages, one can place binary methods outside of the classes on
which they operate, by making the two argument objects into a single pair object and invoking the
method on the pair. That is, the classes Point and ColorPoint do not contain the binary method
eq, and hence ColorPoint is subtype of Point :

Point ≡ OT 〈〈 get-x : int ; get-y : int〉〉

ColorPoint ≡ OT 〈〈 get-x : int ; get-y : int ; get-s : string〉〉

But, we need two new classes, PointPair and ColorPointPair, where the binary method eq of
Point and ColorPoint are defined as unary methods, see Figure 7.4.

Avoiding binary methods is the easiest solution, but sometimes it is important to use binary
methods. In such case, Kim Bruce et al. [15], presented two important solutions.

The first solution is by using the concept of matching. One object type matches another if
the first one has at least the methods of the second one, and the corresponding method types are
same, when the type of the class is replaced by self or this. This relationship is denoted by <#,
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one can represent as:

OT 〈〈m1 : τ1, . . . ,mn : τm〉〉 <# OT 〈〈m1 : τ1, . . . ,mk : τk〉〉

iff k ≤ n.
For example, one can write the type of Point and ColorPoint as

Point ≡ OT 〈〈 get-x : int ; get-y : int ; eq : this→ bool〉〉

ColorPoint ≡ OT 〈〈 get-x : int ; get-y : int ; get-s : string ;

eq : this→ bool〉〉

this, when used in the definition of the subclass ColorPoint automatically represents ColorPoint
rather than Point. Hence, ColorPoint <#Point. But, the type ColorPoint is not a subtype of
Point. Thus, matching is not subtyping and hence if S <#T , matching does not allow the use of
a parameter of type S where type T is expected. Matching tells what parameters can be passed
to an object, and what their types will be. We remark that in binary method, we have the same
type of arguments (i.e. the receiver and the passing parameter). Example 7.2.1 shows the classes
Point and ColorPoint in OCaml. See the method eq is forbidden, when called with different type
of arguments.

Example 7.2.1 # class Point (x,y) =
object (self: ’a)

val r1 : int = x
val r2 : int = y
method getx = r1
method gety = r2
method eq (p: ’a) = (r1,r2) = (p#getx,p#gety)

end;;
# class ColorPoint (x,y,s) =

object (self: ’b)
val s1 : string = s
method gets = s1
inherit point (x,y)

method eq (p1: ’b) =
(r1,r2,s1) = (p1#getx,p1#gety,p1#gets)

end;;
# let m1 = new ColorPoint (1,2,”red”) and n1 = new ColorPoint (1,2,”red”);;
val m1 : ColorPoint = 〈obj〉
val n1 : ColorPoint = 〈obj〉
# m1# eq n1;;
- : bool = true
# let i = new Point (1,2) and j = new Point (3,4);;
val i : Point = 〈obj〉
val j : Point = 〈obj〉

# let npt = new Point (3,4);;
val npt : Point = 〈obj〉
# let breakit ( pt: Point) = if pt#eq npt then ”ok” else ”no”;;
val breakit : Point → string = 〈fun〉
# breakit j;;
- : string = ”ok”
# breakit m1;;
This expression has type
ColorPoint =
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〈 eq : ColorPoint → bool; getx : int; gety : int; gets : string 〉
but is here used with type
Point = 〈 eq : Point → bool; getx : int; gety : int 〉
Only the first object type has a method gets
#

# i# eq m1;;
This expression has type
Point = 〈 eq : Point → bool; getx : int; gety : int 〉
but is here used with type
ColorPoint =
〈 eq : ColorPoint → bool; getx : int; gety : int; gets : string 〉
Only the second object type has a method gets
#

The second solution is by using multi-methods, which are collection of methods with same
name and different type signatures. When a multi-method is called, the selection of the method
code depends on the classes of one or more of the parameters of the method, not just on the
receiver type. This is referred as multiple dispatch. Using multi-methods, subclasses can be safely
considered as subtypes. The solution to multi-methods is adapted in Java.

Example 7.2.2 import java.lang.*;

class Point
{ public int x=0;

public int y=0;
public Point(int a, int b)
{ this.x = a; this.y =b; }
public int getx() { return(x);}
public int gety(){ return(y);}

public boolean eq(Point p)
{ System.out.println(”pc ”+this.x+” pc ”+this.y);
System.out.println(”pc ”+p.x+” pc ”+p.y);
return ( (this.x==p.x) & (this.y==p.y));}
public void disp()
{ System.out.println(”pc ”+this.x+” pc ”+this.y);};
public boolean breakit()
{ Point nupt = new Point(1,2);
return(this.eq(nupt)); }

}

class ColorPoint extends Point
{ public String s;
public String gets() return(s);}
public ColorPoint(int a, int b, String s1)
{ super(a,b);
// this.x = a; this.y =b;
this.s= s1; }
public boolean eq(ColorPoint p)
{ System.out.println(”cpc ”+p.x+” cpc ”+p.y+” cpc ”+p.s);
System.out.println(”cpc ”+this.x+” cpc ”+this.y+” cpc ”+this.s);
return ((this.x==p.x) & (this.y==p.y) & (s == p.s));}
public void disp()
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{ System.out.println(”cpc ”+this.x+” cpc ”+this.y+” cpc ”+this.s);};
}

class Jbinari {
public static void main (String args[]) {
Point pt = new Point(1,3);
ColorPoint cpnt1,cpnt2;
cpt= new ColorPoint(1,2,”red”);

System.out.println(”*********** : 1 ”);
System.out.println(pt.breakit());

System.out.println(”*********** : 2”);
System.out.println(cpt.breakit());

}
}

Example 7.2.2 shows the classes Point and ColorPoint. There method eq is a multi-method
formed by methods of the two classes Point and ColorPoint. The type of eq is

{Point× Point→ bool, ColorPoint× ColorPoint→ bool}

When eq is called by a pair of parameters, then the system will select the “best match” method
for those parameters, i.e. if at least one of the parameters of the method eq is of type Point
and the other is a subtype of it, then the method eq of class Point is selected for execution; if
both parameters are of type a subtype i.e. ColorPoint then the method eq of class ColorPoint
is executed. See Example 7.2.2, when the method breakit is called by cp of ColorPoint, i.e.
cp.breakit(); then it selects the method eq of class Point for execution, since the second paramenter
is of type Point. In general, when a multi-method m of type {X10 × . . . ×X1n → T11, . . . , Xk0 ×
. . . × Xkn → Tkn is called, i.e. X0.m(X1, X2, . . . , Xn), then the system selects the code in X at
runtime for execution, where X is superclass of any Xi, i.e. Xi ≤ X, ∀ i = 0..n, and moreover,
for any other X ′ superclass of all Xi’s, X ≤ X ′. Since the selection of the method code is choosen
at runtime, we have dynamic dispatch.

Finally, we point out that, in the realm of non-class-based OO-languages, analogous problems
arise in the presence of binary methods, when we try to combine object extension with subtyping,
see e.g. [14, 54]. In particular the solution discussed in [54] is probably related to the one presented
in the next section for the class-based OO-language Fickle.

7.3 Yet Another Solution

In this section, we present yet another solution for typing binary methods in presence of inheritance.
In the conclusion we will comment briefly on how this solution came about and how to possibly
strengthen it. In our solution, arrow types, i.e. the types of methods, are contravariant, and a
subclass is a subtype only when the types of overloaded methods are subtypes of the corresponding
methods in the superclass. Under this view, ColorPoint 6≤ Point, since the type ColorPoint →
bool of the method eq in the class ColorPoint is not a subtype of the type Point → bool of the
overloaded method in the class Point. Thus, the method call breakit(p,cp), where p is a Point
and cp is a ColorPoint, is not permitted. However, the system as described above would be quite
restrictive, since e.g. the call breakit(p,cp) would be forbidden, even if this does not cause any
problem, as well as any call to a method with an actual parameter of type ColorPoint, in place of
a formal parameter of type Point. Intuitively, only those method calls are problematic, where the
specialized ColorPoint parameter is used, inside the method, as receiver of a binary overloaded
method. Thus, if we are able to prove that a method m has a certain type, under the assumption
that a given parameter belongs to the class Point without the method eq, then such parameter
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can be safely substituted by a ColorPoint actual parameter. In order to formalize this intuition
we extend the collection of types with types of the shape C−m1,...,mk , where C is the class and
m1, . . . ,mk are methods in C, and C−m1,...,mk is meant to represent the class C without the
methods m1, . . . ,mk.

Now, the method breakit can receive the type bool breakit(Point x1, Point−eq x2), since the
parameter x2 is not used as the target of an eq method call. Moreover, since ColorPoint ≤
Point−eq (eq is not overloaded anymore) the method call breakit(p,cp), for p of class Point and
cp of class ColorPoint, is now allowed. In particular, all method calls with ColorPoint parameter
in place of a Point parameter are permitted, when the method body does not contain any call to
eq. Notice that, however, since the parameter x1 is used as receiver of an eq method call, then
breakit cannot be typed with bool breakit(Point−eq x1, Point x2), and thus the call breakit(cp,p)
is correctly not permitted.

In order to exemplify our proposal, we implement it in the case of the programming language
Fickle introduced in Chapter 2, whose coalgebraic semantics has been studied in Chapter 6. For
simplicity, we will focus on the core of Fickle without reclassification. Thus, in particular all effects
φ disappear in the typing rules of [30] (see Chapter 2, Section 2.4, Tables 2.6,2.7). In the original
typing system of [30], the problem of binary methods is solved simply by forbidding overloading,
and by allowing only overriding in subclasses. We recall that methods in subclasses which override
methods in the superclass must have parameters with the same types as in the overridden methods
of the superclass. This is expressed by the rule for wellformed classes (see Table 2.7, Chapter 2).
Thus, in Fickle the class ColorPoint with method bool eq(ColorPoint x1) is not definable. This
restriction on the formation of subclasses is sufficient to guarantee the safety of the system, where
subclasses are considered as subtypes (see Table 2.5), and the arrow type is contravariant (see the
rule meth for the method call in Table 2.6). This solution is the one adopted in many statically
typed object oriented languages, such as C++, as seen in Subsection 7.2. But, in our view this is
a rather simplistic solution, which prevents natural forms of overloading, such as the method eq of
ColorPoint. In our solution as explained above, we do not impose limitations on overloading, but
rather we provide a fine notion of subtyping which does not coincide with the notion of subclass.
In the following, we show how the typing system of [30] presented in Chapter 2, has to be modified
in order to implement our solution.

Types : τ ::= bool | int | C−m1,...,mk

where C−m1,...,mk represents the class C without the methods m1, . . . ,mk; when the list m1, . . . ,mk

is empty, then we write simply C, as usual.

The rule for wellformed classes of Table 2.7 becomes now more liberal, allowing for more general
forms of overloading (ignoring reclassification):

C(P, c) = class c extends c′ {. . .}
∀f : FD(P, c, f) = t0 =⇒ P ` t0 �ft and F(P, c′, f) = Udf
∀m : MD(P, c,m) = τ m(τ1x1, . . . , τnxn) {e} =⇒

P, {x1 : τ1, . . . , xn : τn, this : c} ` e : τ ′′

P ` τ ′′ ≤ τ
M(P, c′,m) = udf or

(M(P, c′,m) = τ ′ m(τ ′1x1, . . . , τ
′
nxn) and τ ≤ τ ′, τi ≤ τ ′i ∀i)

P ` c �

The subtyping relation of Table 2.5 has to be modified as follows. Subclasses are not automat-
ically subtypes: they are subtypes only when types of overloaded methods are in the subtyping
relation. More precisely, we substitute the last rule of Table 2.5 with the following:



82 7. Typing Binary Methods

class d extends Object {
bool breakit (Point p1, Point p2)
{ p1.eq(p2); }

}

Figure 7.5: Fickle code for breakit

class d extends Object {
bool breakit (Point p1, Point−eq p2)
{ p1.eq(p2); }

}

Figure 7.6: New version for breakit

P ` c′ v c
∀m : MD(P, c′,m) = τ ′ m(τ ′1x1, . . . , τ

′
nxn) and

MD(P, c−m1,...,mk ,m) = τ m(τ1x1, . . . , τnxn) =⇒
τ ′ ≤ τ and τ ′i ≥ τi ∀i )

c′ ≤ c−m1,...,mk

Now, in this modified system, the judgment P, {p1 : ColorPoint, p2 : Point} ` breakit(p1, p2) :
bool cannot be derived, since P 6` ColorPoint ≤ Point. However, the judgment P, {p1 : Point, p2 :
ColorPoint} ` breakit(p1, p2) : bool is derivable, if we assign the type Point−eq to the second
parameter of method breakit, as in the code of Figure 7.6. Namely, the class d in Figure 7.6 is
wellformed, since P, {p1 : Point, p2 : Point−eq} ` p1.eq(p2) is still derivable using the typing rules
for expressions of Table 2.6. Moreover, since P ` ColorPoint ≤ Point−eq is derivable, then also
P, {p1 : Point, p2 : ColorPoint} ` breakit(p1, p2) : bool is derivable.

A result analogous to Theorem 2.4.1 holds for our new typing system, i.e. one can prove that
our system is sound, in the sense that

Theorem 7.3.1 For a well-formed program P , environment Γ, and expression e, such that

P,Γ ` e : t

if P,Γ ` σ�, and e, σ converges then

− e, σ −→P v, σ′, P, σ′ ` v / t, P, Γ′ ` σ′�,

or

− e, σ −→P nullpntrExc, σ′.

The solution for typing binary methods in presence of inheritance that we have presented
in this section improves the original typing system for Fickle, by capturing more class definitions.
Moreover it supports “future code extension” without loosing the subtyping property. Our solution
is quite simple, in the end, but still based on single dispatching. However, it is not so general as
the multi-method solution, since e.g. the call breakit(cp1, cp2), where cp1 and cp2 are of type
ColorPoint, is not accepted by our typing system, because method breakit cannot be typed by
bool(breakit Point−eq x1, Point−eq x2). In principle, we could cover this method calls still living
in the world of single dispatching, at the price of making our system more complex.



Conclusions

In this thesis, we have extended the original coalgebraic model of Reichel-Jacobs for classes and
objects of OO-languages in two ways: by including (generalized) binary methods, and by modelling
also a language with the store. Moreover, we have addressed another critical topic of OO-languages,
i.e. typing binary methods when subclasses are viewed as subtypes. While the coalgebraic analysis
of generalized binary methods presented in Chapter 5 of this thesis appears rather satisfactory,
still there are interesting issues which deserve further study. Here we list some of them:

• A coalgebraic account of infinitary methods i.e. methods whose parameters include an infinite
sequence of sets or objects, appears to be very problematic. Is a coalgebraic account of these
really hopeless?

• The freezing and the graph approach do not always coincide. We feel that when this happens
the class is underspecified. Can this be formalized more stringently?

• To apply the coalgebraic approach to Featherweight Java.

• To explore coalgebraic accounts of component-based and service oriented computing.

• Case studies of applications of coinduction principles and bialgebraic specification in proving
program correctness: we will build a suitable module for the interactive proof editor COQ ;

• In Chapter 6, a coalgebraic model of an OO-language with the store is presented, but only
unary methods are considered. Extra issues arise when binary methods are included, and
the problem of providing a coalgebraic model in the general case remains open.

• The issue of program equivalence and program transformation for Java-like OO-languages
seems not to have been investigated in the literature. In Chapter 2, we initiate such an
investigation for Fickle, and in Chapter 6, we compare the bisimilarity equivalence induced by
our coalgebraic model with the notion of observational equivalence introduced in Chapter 2.
However, a more systematic study of notions of observational equivalences for Java-like OO-
languages and a comparison with coalgebraic equivalence is called for.

• The graph coalgebraic approach of Chapter 5 for modelling binary methods was the original
suggestion for the solution to the problem of typing binary methods when subclasses are
considered as subtypes, presented in Chapter 7, Section 7.3.

In fact, in the graph approach, methods are modelled as graphs instead of as functions,
importing this idea in the world of types, we can introduce a new type constructor, i.e. the
relation type, and use this to type binary methods in class declarations. Since relation types
are purely covariant, the subtyping property is maintained by subclasses. Binary methods
can still be typed also with the standard arrow type, which is a subtype of the corresponding
relation type, see Table C.1. To preserve safety, contrary to arrow types, we assume relation

x : α M : β α ≤ α′ β ≤ β′

λxα.M : α⊗ β α⊗ β ≤ α′ ⊗ β′ α→ β ≤ α⊗ β

Table C.1: Typing rules for Relational Types ⊗
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types not to be “applicable”, i.e. one can decide that there is no relational counterpart to
the rule : M :α→β N :α

MN :β , this is the origin of the “reduced” types for the classes, or partial
functions. This solution to the problem of typing binary methods is quite simple, in principle,
and it allows for single dispatching in method calls. The syntax presented in Section 7.3 of
Chapter 7 was introduced later in order to make the system more palatable.

The relation type should deserve a move through investigation for its own sake. We feel that
multiple dispatch can be construed as a relational type, but more work needs to be done.
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Categorical Definitions

In this appendix, we collect some basic categorical definitions.

Definition 7.0.2 (Category) A category C is given by the data (1)-(5), which satisfy the prop-
erties (i)-(iv):

1. a collection Obj(C) of objects C;

2. a collection Mor(C) of morphisms(arrows, maps)of C;

3. an operation, which assigns to each morphism f ∈ Mor(C) objects dom(f), cod(f), called
domain and codomain of f , respectively;

4. an operation, which assigns to each object X ∈ Obj(C) a morphism idX , called identity
morphism on X;

5. an operation, which assigns to each pair of morphisms f, g such that cod(f) = dom(g), a
morphism g ◦ f , called their composition(such a pair f, g is said to be composable) satisfying
the following properties:

(i) dom(idX) = X = cod(idX);

(ii) dom(g ◦ f) = dom(f), cod(g ◦ f) = cod(g);

(iii) for each f ∈ C with X = dom(f) and Y = cod(f) f ◦ idX = f = idY ◦ f ;

(iv) if f, g, and g, h are composable pairs, then h ◦ (g ◦ f) = (h ◦ g) ◦ f .

Definition 7.0.3 (Functor) Let C,D be two categories. A functor F : C → D assigns to each
object X ∈ Obj(C) an object F (X) ∈ Obj(D), and to each morphism f ∈ Mor(C) a morphism
F (f) ∈Mor(D), such that:

• if f : X → Y in C, then F (f) : F (X)→ F (Y ) in D;

• F (idX) = F (idF (X));

• F (g ◦ f) = F (g) ◦ F (f).

The notion of functor captures the notion of morphism between categories, while the notion of
natural transformation (below) captures morphisms between functors.

Definition 7.0.4 Given functors F,G : C → D, a natural transformation λ : F
·⇒ G is an

operation which assigns to each object X in C an arrow λX : F (X)→ G(X) in D such that, given
any f : X → Y in C, Gf ◦ λX = λY ◦ Ff .

F (X)
Ff //

λX

��

F (Y )

λY

��
G(X)

Gf
// G(Y )

Throughout this appendix we work in a category C. The objects of C are ranged over by X, Y, Z,
etc., while the morphisms are ranged over by e, f, g, etc.
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Definition 7.0.5 (Product) A binary product of X and Y is a triple X
πX← X × Y

πY→ Y such
that, for all f : Z → X, g : Z → Y, there exists a unique 〈f, g〉 : Z → X × Y making the following
diagram commute:

Z

〈f,g〉
��

f

{{wwwwwwwww
g

##G
GGGGGGGG

X X × YπX

oo
πY 2

// Y

Definition 7.0.6 (Coproduct) A binary coproduct of X and Y is a triple X
iX→ X + Y

iY← Y
such that, for all f : X → Z, g : Y → Z, there exists a unique 〈f, g〉 : X + Y → Z making the
following diagram commute:

X

f
##G

GGGGGGGG X + Y
iXoo iY //

〈f,g〉
��

Y

g
{{xxxxxxxxx

Z

Definition 7.0.7 (Equalizer) Let f, g : X → Y. An equalizer of f and g is a pair (E, e : E → X)
such that

1. f ◦ e = g ◦ e, i.e. E
e // X

f //

g
// Y

2. for any other equalizer (E′, e′ : E′ → X), there exists a unique morphism u : E′ → E such
that the following diagram commute:

E′

e′

��

u

~~
E

e // X
f //

g
// Y

Definition 7.0.8 (Pullback, Kernel Pair) Let f : X → Z and g : Y → Z.

• A weak pullback of f and g is a triple (P, p1 : P → X, p2 : P → Y ), such that, for any triple
(P ′, p′1 : P ′ → X, p′2 : P ′ → Y ), there exists a morphism u : P ′ → P such that the following
diagram commute:

P ′

u

  
p′1

��0
00

00
00

00
00

00
0

p′2

''PPPPPPPPPPPPPP

P p2
//

p1

��

Y

g

��
X

f
// Z

• A pullback of f and g is a weak pullback such that the morphism u in the diagram above is
unique.

• A kernel pair is a pullback for a morphism f : X → Y with itself.

Definition 7.0.9 (Forgetful Functors) Let C and D be categories. A forgetful functor U : C →
D is a functor which operates on objects of C by “forgetting” any imposed structure. Examples of
forgetful functors are:
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• UL : AlgL → C, mapping algebras to their carriers:

(X, β) UL

7→ X

• UH : CoalgH → C, mapping coalgebras to their carriers:

(X, α) UH7→ X

• Uλ : λ-Bialg → CoalgH , forgetting the algebra structure of λ-bialgebras:

(X, β, α) Uλ

7→ (X, α)

• Uλ : λ-Bialg → AlgL, forgetting the coalgebra structure of λ-bialgebras:

(X, β, α) Uλ7→ (X, β)

Following [59], we define adjunction as follows:

Definition 7.0.10 (Adjunction) Let C and D be categories. An adjunction from C to D is a
triple 〈F,G, ϕ〉, where F : C → D and G : D → C are two functors, and ϕ is a function which
assigns to each pair of objects X ∈ C and Y ∈ D a bijection

ϕ = {ϕX,Y : D(F (X), Y ) ∼= C(X, G(Y ))}X,Y

which is natural in X and Y .

Here naturality of the bijection ϕ means that for all morphisms h : X ′ → X in C and all
morphisms k : Y → Y ′ in D the following diagrams commute:

D(F (X), Y )
ϕX,Y //

(Fh)∗

��

C(X, G(Y ))

h∗

��
D(F (X ′), Y )

ϕX′,Y
// C(X ′, G(Y ))

D(F (X), Y )
ϕX,Y //

k∗

��

C(X, G(Y ))

(Gk)∗

��
D(F (X), Y ′)

ϕX,Y ′
// C(X, G(Y ′))

k∗ is short for D(F (X), k), the operation of composition with k, and h∗ = C(h, G(Y )).
An adjunction is a bijection which assigns to each arrow f : FX → Y an arrow ϕf = radf :

X → GY , the right adjunct of f, in such a way that the naturality conditions of above diagrams,

ϕ(f ◦ Fh) = ϕf ◦ h, ϕ(k ◦ f) = Gk ◦ ϕf,

hold for all f and all arrows h : X ′ → X and k : Y → Y ′. It is equivalent to require that ϕ−1 be
natural; i.e. that for every h, k and g : X → GY one has

ϕ−1(gh) = ϕ−1g ◦ Fh, ϕ−1(Gk ◦ g) = k ◦ ϕ−1g.

For such an adjunction, F is called the left adjoint of G and G the right adjoint of F . It is
denoted as

F a G.
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Theorem 7.0.11 (Unit and Counit of adjuction) An adjunction 〈F,G, ϕ〉 : C → D deter-
mines

1. A natural transformation η : 1X → GF such that for each object X the arrow ηX is universal
to G from X, while the right adjunct of each f : FX → Y is

ϕf = Gf ◦ ηX : X → GY (7.0.1)

η is called unit of the adjunction.

2. A natural transformation ε : FG → 1Y such that for each arrow εY is universal to Y from
F , while each g : X → GY has left adjunct

ϕ−1g = εY ◦ Fg : FX → Y (7.0.2)

ε is called counit of the adjuction.

3. The following composites are identities:

Gε ◦ ηG εF ◦ Fη. (7.0.3)

Summarizing we have:

Theorem 7.0.12 Each adjunction 〈F,G, ϕ〉 : C → D is completely determined by the items in any
one of the following list:

1. Functors F, G, and a natural transformation η : 1X → GF such that each ηX : 1X → GFX
is universal to X from G. Then ϕ is defined by Equation 7.0.1.

2. The functor G : D → C, and for each X ∈ C, and object F0X ∈ D, there exists a universal
arrow ηX : 1X → GF0X from X to G. Then the functor F has object function F0 and is
defined on arrows h : X → X ′ by GFh ◦ ηX = ηX ◦ h.

3. Functors F, G, and a natural transformation ε : FG → 1Y such that each εY : FGY → 1Y

is universal to F from Y . Then ϕ−1 is defined by Equation 7.0.2.

4. The functor F : C → D, and for each Y ∈ D, and object G0Y ∈ C, there exists a universal
arrow εY : FG0Y → 1Y from F to Y . Then the functor G has object function G0 and is
defined on arrows k : Y ′ → Y by εY ◦ FGk = k ◦ εY .

5. Functors F, G, and a natural transformation η : 1X → GF and ε : FG → 1Y such that
both composites in Equation 7.0.3 are the identity transformations. Here ϕ is defined by
Equation 7.0.1 and ϕ−1 is defined by Equation 7.0.2.
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